Refine Your Search

Topic

Search Results

Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Technical Paper

Unique Material Handling and Automated Metrology Systems Provides Backbone of Accurate Final Assembly Line for Business Jet

2016-09-27
2016-01-2104
Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

Robotic Drilling and Countersinking on Highly Curved Surfaces

2015-09-15
2015-01-2517
Electroimpact has developed a novel method for accurately drilling and countersinking holes on highly convex parts using an articulated arm robotic drilling system. Highly curved parts, such as the leading edge of an aircraft wing, present numerous challenges when attempting to drill normal to the part surface and produce tight tolerance countersinks. Electroipmact's Accurate Robot technology allows extremely accurate positioning of the tool point and the spindle vector orientation. However, due to the high local curvature of the part, even a small positional deviation of the tool point can result in a significantly different normal vector than expected from an NC program. An off-normal hole will result in an out of tolerance countersink and a non-flush fastener.
Journal Article

Plate Cartridge Compact Flexible Automatic Feed System

2016-09-27
2016-01-2080
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Technical Paper

ONCE (ONe-sided Cell End effector) Robotic Drilling System

2002-09-30
2002-01-2626
The ONCE robotic drilling system utilizes a mass produced, high capacity industrial robot as the motion platform for an automated drilling, countersinking, and hole inspection machine for the skin to substructure join on the F/A-18E/F Super Hornet wing trailing edge flaps (TEF). Historically, robots have lacked the accuracy, payload capacity, and stiffness required for aerospace drilling applications. Recent improvements in positional accuracy and payload capacity, along with position and stiffness compensation, have enabled the robot to become an effective motion platform. Coupled with a servo-controlled multifunction end effector (MFEE), hole locations have successfully been placed within the specification's +/-0.060″ tolerance. The hole diameters and countersinks have proven to be very accurate, with countersink depth variation at 0.0025″ worst case.
Technical Paper

Next Generation Mobile Robotic Drilling and Fastening Systems

2014-09-16
2014-01-2259
Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet.
Technical Paper

Narrow Fixture Improves One-Up Panel Assembly

2022-03-08
2022-01-0015
The use of a narrow profile posts or Skinny Fixture increases build speed and flexibility while improving quality of aluminum aircraft panels fastened in one-up assembly cells. Aluminum aircraft panels are made up of an outer skin and a series of stringers. The components must be held in accurate relative positions while preliminary fasteners are installed. By using narrow fixture posts in conjunction with deep drop stringer side machine tools, the fastening machine can apply fasteners at tighter initial spacing. The spacing is gained by providing clearances that allows the centerline of the fastening system to work closer to the post than previously achieved with deep fixture posts and short stringer side tooling. At one time the standard process was to hold the parts in manual tack cells and after tacking the panels are moved to a separate automated fastening cell. One-up assembly fixtures improve the process by reducing manual processes while minimizing component handling.
Technical Paper

Mobile Automated Robotic Drilling, Inspection, and Fastening

2013-09-17
2013-01-2338
The versatility of the accurate robot has been increased by coupling it with a mobile platform with vertical axis. The automation can be presented to fixed aircraft components such as wings, fuselage sections, flaps, or other aircraft assemblies requiring accurate drilling, inspection, and fastening. The platform accommodates a tool changer, ride along coupon stand, fastener feed system, and other systems critical for quality automated aircraft assembly. The accurate robot's flexibility is increased by a floor resynchronization system. The indexing system is replaced by an automated two-camera onboard vision system and miniature targets embedded in the factory floor, with accuracy comparable to cup and cone alternatives. The accurate robot can be deployed by casters, curvilinear rail, or air bearings.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

Join Cell for the G150 Aircraft

2006-09-12
2006-01-3123
A simple, open, post and index system is used for final alignment and joining of the fuselage and wings of a new passenger business jet. 19 manually actuated axes precisely move the wings, forward, and rear fuselage sections into position. Movement is accomplished with industrial jacking screws and positions recorded with precision linear potentiometers. Wing sweep, angle of attack, and dihedral are monitored and controlled. The axes positions are downloaded to data files for verification and data archiving. The Gulfstream G150 Join Cell's open architecture enhances access to fasten the main aircraft structure while maintaining flight critical geometry.
Technical Paper

Integrated Hole and Countersink Inspection of Aircraft Components

2013-09-17
2013-01-2147
Precision hole inspection is often required for automated aircraft assembly. Direct contact measurement has been proven reliable and accurate for over 20 years in production applications. At the core of the hole measurement process tool are high precision optical encoders for measurement of diameter and countersink depth. Mechanical contact within the hole is via standard 2-point split ball tips, and diametric data is collected rapidly and continuously enabling the system to profile the inner surface at 0 and 90 degrees. Hole profile, countersink depth, and grip length data are collected in 6 seconds. Parallel to the active process, auto-calibration is performed to minimize environmental factors such as thermal expansion. Tip assemblies are selected and changed automatically. Optional features include concave countersink and panel position measurement.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

High-Accuracy Articulated Mobile Robots

2017-09-19
2017-01-2095
The advent of accuracy improvement methods in robotic arm manipulators have allowed these systems to penetrate applications previously reserved for larger, robustly supported machine architectures. A benefit of the relative reduced size of serial-link robotic systems is the potential for their mobilization throughout a manufacturing environment. However, the mobility of a system offers unique challenges in maintaining the high-accuracy requirement of many applications, particularly in aerospace manufacturing. Discussed herein are several aspects of mechanical design, control, and accuracy calibration required to retain accurate motion over large volumes when utilizing mobile articulated robotic systems. A number of mobile robot system architectures and their measured static accuracy performance are provided in support of the particular methods discussed.
Technical Paper

High Volume Automated Spar Assembly Line (SAL)

2017-09-19
2017-01-2073
The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
Technical Paper

High Path Accuracy, High Process Force Articulated Robot

2013-09-17
2013-01-2291
Spirit AeroSystems' process of producing carbon fiber nacelle panels requires heat and high force plus a high level of dynamic accuracy. Traditionally this would require large and expensive custom machines. A low cost robotic alternative was developed to perform the same operations utilizing an off-the-shelf 6-axis robot mated to a servo-controlled linear axis. Each of the 7 axes is enhanced with secondary position encoders and the entire system is controlled by a Siemens 840Dsl CNC. The CNC handles all process functions, robot motion, and executes software technologies developed for superior dynamic positional accuracy, including enhanced kinematics. The layout of the work cell allowed the robot to span two work zones so that parts can be loaded and unloaded while the robot continues working in the adjacent zone.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Journal Article

High Accuracy Articulated Robots with CNC Control Systems

2013-09-17
2013-01-2292
A robotic arm manipulator is often an appealing method to position drills, bolt inserters, automated fiber placement heads, or other end effectors. In a standard robot the flexibility of the cantilevered arm as well as backlash in the drive system lead to large positioning errors. Previous work has greatly reduced this error through the use of secondary scales and a mathematical model of the robot deflection running on a CNC controller. Further research improved upon this model by accounting for linear deformation of each robot link regardless of position. The parameters describing these deformations are determined through a calibration routine and then used in real time to guide the end effector accurately to any reachable pose. In practice this method has been used to achieve total on-part positioning accuracy of better than +/− 0.25mm.
X