Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

The Effect of a Turbocharger Clearance Control Coating on the Performance and Emissions of a 2-Stroke Diesel Engine

1999-10-25
1999-01-3665
Extensive efforts are being made to improve emissions from 2-stroke diesel engines. These improvements are primarily directed towards older model year engines with relatively high emissions compared with modern diesel engines. While most researchers focus their attention on engine design changes that promise substantial emission improvements, this work dealt with the turbocharger characteristics, especially as related to using internal coatings on both the compressor and turbine housings. Two identical turbochargers were tested on a Detroit Diesel 6V-92TA engine. One of the two turbochargers was left in its production configuration while the other was coated with a clearance control coating on the inside of the compressor and turbine housings. This coating led to a significant reduction in the tip clearance of both the compressor and turbine wheels.
Technical Paper

Save the Diesel Fueled Engine: A Clean Diesel Engine with Catalytic Aftertreatment - The Alternative to Alternate Fuels

1993-04-01
931182
Off-Highway diesel engines may benefit from exhaust emission control systems developed for on-highway vehicles. Both the diesel oxidation catalyst and the catalytic soot filter are being used to remove diesel smoke and odor. The advantages of both of these technologies are explained. NOx emissions control from diesel engines are now being addressed. Alternate fuels, such as methanol or natural gas, have been designed to replace diesel fuel as a measure to control NOx emissions. To avoid transfer to alternate fuels and permit continued use of diesel fuel in diesel engines, two approaches are being studied. These are the use of exhaust gas recirculation (EGR) and the development of a new technology called a lean NOx reduction catalyst. EGR, if successfully developed, probably will require the use of a catalytic soot filter. Lean NOx catalysts have been developed but still are not at a practical stage yet.
Technical Paper

PremAir® Catalyst System – A New Approach to Cleaning the Air

1999-10-25
1999-01-3677
Classical approaches to pollution control have been to develop benign, non-polluting processes or to abate emissions at the tailpipe or stack before release to the atmosphere. A new technology called PremAir® Catalyst Systems1 takes a different approach and reduces ambient, ground level ozone directly. This technology takes advantage of the huge volumes of air which are processed daily by both mobile and stationary heat exchange devices. For mobile applications, the new system involves placing a catalytic coating on a vehicle's radiator or air conditioning condenser. For stationary applications, the catalytic coating typically is applied to an insert, which is attached to the air conditioning condenser. In either case, the catalyst converts ozone to oxygen as ozone containing ambient air passes over the coated radiator or condenser surfaces.
Technical Paper

PremAir® Catalyst System

1998-10-19
982728
Traditional approaches to pollution control have been to develop benign non-polluting processes or to abate emissions at the tailpipe or stack before emitting to the atmosphere. A new technology called PremAir®* Catalyst Systems takes a different approach and directly reduces ambient ground level ozone. This technology can be applied to both mobile and stationary applications. For automotive applications, the new system involves placing a catalytic coating on the car's radiator or air conditioner condenser. As air passes over the radiator or condenser, the catalyst converts the ozone into oxygen. Three Volvo vehicles with a catalyst coating on the radiator were tested on the road during the 1997 summer ozone season in southern California to assess performance. Studies were also conducted in Volvo's laboratory to determine the effect of the catalyst coating on the radiator's performance with regard to corrosion, heat transfer and pressure drop.
Technical Paper

In-Service Evaluation of Performance Enhancing Coatings for a Heavy Duty Diesel Truck Engine

1999-10-25
1999-01-3666
This paper presents the results of an on-road evaluation of in-cylinder ceramic thermal barrier coating GPX″-4M and turbocharger clearance control coating. Engelhard Corporation carried out the testing as a part of a pre-production product development and evaluation process. Contained in the paper are the results of a three-year long experiment conducted on an Engelhard's truck. Discussed in the paper are in-service performance and durability of Engelhard's coating. The experimental fuel usage data underwent substantial statistical treatment and analysis. In combination with the unique test conditions this allowed credible conclusions regarding the truck fuel economy. It was clearly demonstrated that the truck equipped with in-cylinder GPX coated components used 1.4% less fuel than a standard truck for the same amount of work performed over a 16-month period. This fuel saving is associated with the engine rebuild.
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Emissions Implications of a Twin Close Coupled Catalyst System Designed for Improved Engine Performance on an In-line 4 Cylinder Engine

2002-03-04
2002-01-1092
The emission capability of an exhaust system tuned for improved engine performance from an in-line four-cylinder engine has been investigated. The exhaust system comprises two close-coupled catalysts; each located in separate exhaust streams and has been termed the 4-2 close-coupled catalysts (CCC) -1 system. It has been shown that, given equivalent total catalyst volume, this system configuration results in compromised high exhaust flow rate emissions performance compared with a single catalyst (4-1semi-CCC) system. This emissions performance deficit has been attributed to the effect of engine frequency flow pulsations, which result in relatively high peak space velocities in the 4-2CCC-1 system despite the mean space velocity being consistent. Engine-based AFR Bias Sweep tests suggest that hydrocarbon emissions are most strongly affected by this phenomenon. At lower exhaust flow rates, the difference in performance between the two systems is negligible.
Technical Paper

Effects of Sulfur on Performance of Catalytic Aftertreatment Devices

1992-02-01
920557
In the effort to design reliable diesel engines which meet the strict US Federal Regulations for emissions, considerable progress has been made by engine manufacturers. Particulate emissions are now below 0.25 g/BHPh and after 1994 will be below 0.1 g/BHPh. Diesel fuel has a revised specification limit of 0.05% sulfur as a means to assist diesel engine manufacturers in complying with the 1994 standard. Diesel oxidation catalysts (DOC) have been chosen as another means. A DOC can efficiently oxidize soluble organic particulate matter (SOF) and gaseous hydrocarbons while easily oxidizing SO2 to SO3-the latter being a particulate and undesirable. Selective DOCs have been developed which maintain the activity for SOF and minimize the undesirable SO2 oxidation step. However, performance for gaseous hydrocarbons may be negatively affected.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
X