Refine Your Search

Topic

Search Results

Technical Paper

Transient High-Pressure Hydrogen Jet Measurements

2006-04-03
2006-01-0652
Schlieren visualization was performed to investigate hydrogen injection into a quiescent chamber. The injection pressures investigated were 52 and 104 bar, and the chamber density ranged from 1.15 to 12.8 kg/m3, giving rise to underexpanded jets for all conditions. The expansion waves outside the nozzle were clearly visible with hydrogen, and the effect was confirmed with studies of nitrogen injected into a nitrogen environment. The distance between the expansion wave fronts was found to scale directly with the ratio of the exit pressure to the chamber pressure. The jet tip penetration rate was measured and was found to increase with injection pressure, and decrease with chamber density as expected. A mass- and momentum-preserving scheme was developed to relate the underexpanded jet to a subsonic jet of larger diameter.
Technical Paper

Thermal Studies in the Exhaust System of a Diesel-Powered Light-Duty Vehicle

2004-03-08
2004-01-0050
This paper is a continuation of an earlier paper, which examined the steady-state internal heat transfer in the exhaust system of a diesel powered, light-duty vehicle. The present paper deals with the heat transfer of the exhaust system during two types of transient testing, as well as, the estimation of the exhaust systems external heat transfer. Transient heat transfer was evaluated using: a simple fuel-step transient under constant speed and the New European Driving Cycle (NEDC). The thermal response of the external walls varied considerably for the various components of the exhaust system. The largest percent difference between the measured temperatures and the corresponding quasi-steady estimates were about 10%, which is attributed to thermal storage. Allowing for thermal storage resulted in an excellent agreement between measurements and analysis.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

2005-04-11
2005-01-0148
A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

The Effects of Exhaust Gas Recirculation in Utility Engines

2006-11-13
2006-32-0116
The effects of residual gas mixing were studied in a single-cylinder, air-cooled utility engine using both external exhaust gas recirculation (EGR) and internal residual retention. EGR was introduced far upstream of the throttle to ensure proper mixing. Internal residual was changed by varying the length of the valve overlap period. EGR was measured in the intake system; the total in-cylinder diluent was directly measured using a skip-fire, cylinder dumping technique. A sweep of diluent fraction was performed at different engine speeds, engine loads, fuel mixture preparation systems, and ignition timings. An optimum level of diluent, where the combined hydrocarbon and NOx emissions were minimal, was found to exist for each operating condition. Higher levels of diluent, either through internal retention or external recirculation, caused the combined emissions to increase.
Technical Paper

Steady-State Thermal Flows in an Air-Cooled, Four-Stroke Spark-Ignition Engine

1999-03-01
1999-01-0282
Measurements of the instantaneous heat flux at three positions on the cylinder head surface, and the steady-state cylinder head temperatures at four positions on the cylinder head have been obtained. Engine tests were performed for a range of air-fuel ratios including regimes rich of stoichiometric, stoichiometric, and lean of stoichiometric. In addition, ignition timing was advanced in increments from 22° BTDC to 40° BTDC. All tests were run with the throttle either fixed in the wide open position, or fixed in a position that produced 75% of the maximum power with the standard ignition timing and an air-fuel ratio of 13.5. This was done to ensure that changes in air mass flow rate were not influencing the results. In addition, all tests were performed with a fuel mixture preparation being provided by system designed to deliver a homogeneous premixed charge to the inlet port. This was done to ensure that mixture preparation issues were not confounding the results.
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

2003-03-03
2003-01-0348
A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Scavenging Measurements in a Direct-Injection Two-Stroke Engine

2003-09-16
2003-32-0081
The scavenging process in a direct-injection two-stroke research engine was examined by using an electromagnetically controlled poppet valve to sample the trapped charge. A physical model was developed to characterize the scavenging based solely on the measured trapped gas composition. This method obviates the need to measure the post-combustion composition of the trapped charge, which significantly eases the sampling valve requirements. The valve that was developed proved to be very robust and was able to sample over 30% of the trapped mass at 3000 rpm. The measured scavenging efficiency was found to agree well with the non-isothermal two-zone perfect mixing limit of scavenging. The scavenging efficiency was found to increase with delivery ratio, and was nearly independent of speed.
Technical Paper

Residual Gas Measurements in a Utility Engine

2004-09-27
2004-32-0029
The residual gas fraction was measured in an air-cooled single-cylinder utility engine by directly sampling the trapped cylinder charge during a programmed misfire. Tests were performed for a range of fuel mixture preparation systems, cam timings, ignition timings, engine speeds and engine loads. The residual fraction was found to be relatively insensitive to the fuel mixture preparation system, but was, to a moderate degree, sensitive to the ignition timing. The residual fraction was found to be strongly affected by the amount of valve overlap and engine speed. The effects of engine speed and ignition timing were, in part, due to the in-cylinder conditions at EVO, with lower temperatures favoring higher residual fractions. The data were compared to existing literature models, all of which were found to be lacking.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Technical Paper

Numerical Study of Fuel/Air Mixture Preparation in a GDI Engine

1999-10-25
1999-01-3657
Numerical simulations are performed to investigate the fuel/air mixing preparation in a gasoline direct injection (GDI) engine. A two-valve OHV engine with wedge combustion chamber is investigated since automobiles equipped with this type of engine are readily available in the U.S. market. Modifying and retrofitting these engines for GDI operation could become a viable scenario for some engine manufactures. A pressure-swirl injector and wide spacing injection layout are adapted to enhance mixture preparation. The primary interest is on preparing the mixture with adequate equivalence ratio at the spark plug under a wide range of engine operating conditions. Two different engine operating conditions are investigated with respect to engine speed and load. A modified version of the KIVA-3V multi-dimensional CFD code is used. The modified code includes the Linearized Instability Sheet Atomization (LISA) model to simulate the development of the hollow cone spray.
Technical Paper

Neural Cylinder Model and Its Transient Results

2003-10-27
2003-01-3232
A cylinder model was developed using artificial neural networks (ANN). The cylinder model utilized the trained ANN models to predict engine parameters including cylinder pressures, cylinder temperatures, cylinder wall heat transfer, NOx and soot emissions. The ANN models were trained to approximate CFD simulation results of an engine. The ANN cylinder model was then applied to predict engine performance and emissions over the standard heavy-duty FTP transient cycle. The engine responses varying over the engine speed and torque range were simulated in the course of the transient test cycle. It was demonstrated that the ANN cylinder model is capable of simulating the characteristics of the engine operating under transient conditions reasonably well.
Technical Paper

Multidimensional Modeling of the Effects of Radiation and Soot Deposition in Heavy-duty Diesel Engines

2003-03-03
2003-01-0560
A radiation model based on the Discrete Ordinates Method (DOM) was incorporated into the KIVA3v multidimensional code to study the effects of soot and radiation on diesel engine performance at high load. A thermophoretic soot deposition model was implemented to predict soot concentrations in the near-wall region, which was found to affect radiative heat flux levels. Realistic, non-uniform combustion chamber wall surface temperature distributions were predicted using a finite-element-based heat conduction model for the engine metal components that was coupled with KIVA3v in an iterative scheme. The more accurate combustion chamber wall temperatures enhanced the accuracy of both the radiation and soot deposition models as well as the convective heat transfer model. For a basline case, (1500 rev/min, 100% load) it was found that radiation can account for as much as 30% of the total wall heat loss and that soot deposition in each cycle is less than 3% of the total in-cylinder soot.
Technical Paper

Multicomponent Fuel Spark Ignition and Combustion Models

2001-09-24
2001-01-3605
Many commercial fuels, including gasoline and diesel, are multicomponent hydrocarbons. During the fuel vaporization process, the volatile components evaporate first, which dominate the region near the nozzle exit. The lately evaporated vapor with high penetration has high molecular weight. Thus, ignition and combustion of multicomponent fuels are not only influenced by distribution of fuel vapor mass fraction, but also by distribution of the components. This paper presents a spark ignition and combustion model with consideration of such multicomponent effects for GDI engines. Ignition kernel growth due to flame front propagation is considered in the model to eliminate the sensitivity of the numerical mesh size on the results.
Technical Paper

Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays

1999-01-01
1999-01-0912
A phenomenological nozzle flow model has been developed and implemented in both the FIRE and KIVA-II codes to simulate the effects of the nozzle geometry on fuel injection and spray processes. The model takes account of the nozzle passage inlet configuration, flow losses and cavitation, the injection pressure and combustion chamber conditions and provides initial conditions for multidimensional spray modeling. The discharge coefficient of the injector, the effective injection velocity and the initial drop or injected liquid ‘blob’ sizes are calculated dynamically during the entire injection event. The model was coupled with the wave breakup model to simulate experiments of non-vaporizing sprays under diesel conditions. Good agreement was obtained in liquid penetration, spray angle and drop size (Sauter Mean Diameter). The integrated model was also used to model combustion in a Cummins single-cylinder optical engine with good agreement.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Modeling of a Turbocharged DI Diesel Engine Using Artificial Neural Networks

2002-10-21
2002-01-2772
Artificial neural networks (ANN) have been recognized as universal approximators for nonlinear continuous functions and actively applied in engine research in recent years [1, 2, 3, 4, 5, 6, 7 and 8]. This paper describes the methodology and results of using the ANN to model a turbocharged DI diesel engine. The engine was simulated using the CFD code (KIVA-ERC) over a wide range of operating conditions, and numerical simulation results were used to train the ANN. An efficient data collection methodology using the Design of Experiments (DOE) techniques was developed to select the most characteristic engine operating conditions and hence the most informative data to train the ANN. This approach minimizes the time and cost of collecting training data from either computational or experimental resources. The trained ANN was then used to predict engine parameters such as cylinder pressure, cylinder temperature, NOx and soot emissions, and cylinder heat transfer.
Technical Paper

Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method

2003-03-03
2003-01-0722
An improved discrete particle ignition kernel (DPIK) model and the G-equation combustion model have been developed and implemented in KIVA-3V. In the ignition model, the spark ignition kernel growth is tracked by Lagrangian markers and the spark discharge energy and flow turbulence effects on the ignition kernel growth are considered. The predicted ignition kernel size was compared with the available measurements and good agreement was obtained. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the level set method (G-equation) is used to track the mean turbulent flame propagation. It is shown that, by ignoring the detailed turbulent flame brush structure, fine numerical resolution is not needed, thus making the models suitable for use in multidimensional modeling of SI engine combustion.
Technical Paper

Modeling Fuel System Performance and Its Effect on Spray Characteristics

2000-03-06
2000-01-1253
Fuel Injection System (FIS) research on injection pressure, timing control, and rate shaping, and studies on the modeling of injector nozzle flows and their effect on fuel spray characteristics are usually conducted separately. Only recently has the fuel injection and spraying process been studied as a complete system, i.e., including both the high-pressure fuel delivery and its effect on the nozzle flow characteristics, including nozzle cavitation. A methodology for coupling the fuel injection system and its effect on spray characteristics is presented here. The method is applied to an example case of a conventional pump-line-nozzle system. Mathematical models for characterizing the flows from the pump to the nozzle are formulated and solved using the Method of Characteristics and finite difference techniques. The nozzle internal flow is modeled using zero-dimensional flow models, in which the nozzle cavitation and its effect on the nozzle exit flow are accounted for.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
Technical Paper

Methods and Results from the Development of a 2600 Bar Diesel Fuel Injection System

2000-03-06
2000-01-0947
An ultrahigh injection pressure, common rail fuel injection system was designed, fabricated, and evaluated. The result was a system suitable for high-power density diesel engine applications. The main advantages of the concept are a very short injection duration capability, high injection pressure independent of engine speed, a simplified electronic control valve, and good packaging flexibility. Two prototype injectors were developed. Tests were performed on an injector flow bench and in a single cylinder research engine. The first prototype delivered 320 mm3 within 2.5 milliseconds with a 2600 bar peak injection pressure. A conventional minisac nozzle was used. The second prototype employed a specially designed pintle nozzle producing a near-zero cone angle liquid jet impinging on a 9-mm cylindrical target centered on the piston bowl crown (OSKA-S system). The second prototype had the capability to deliver 316mm3 in 0.97ms.
X