Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

U.S. Army Investigation of Diesel Exhaust Emissions Using JP-8 Fuels with Varying Sulfur Content

1996-10-01
961981
Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 weight percent (wt%) was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are equivalent to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Methylal and Methylal-Diesel Blended Fuels for Use in Compression-Ignition Engines

1999-05-03
1999-01-1508
“Gas-to-liquids” catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude-derived fuels. Methylal (CH3-O-CH2-O-CH3), also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins B5.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions.
Technical Paper

Development of Improved Arctic Engine Oil (OEA-30)

1999-05-03
1999-01-1523
U.S. Army arctic engine oil, MIL-L-46167B, designated OEA, provides excellent low-temperature operation and is multi functional. It is suitable for crankcase lubrication of reciprocating internal combustion engines and for power-transmission fluid applications in ground equipment. However, this product required 22-percent derated conditions in the two-cycle diesel engine qualifications test. Overall, OEA oil was limited to a maximum ambient temperature use of 5°C for crankcase applications. The technical feasibility of developing an improved, multi functional arctic engine oil for U.S. military ground mobility equipment was investigated. The concept was proven feasible, and the new oil, designated as OEA-30, has exceptional two-cycle diesel engine performance at full engine output and can be operated beyond the 5°C maximum ambient temperature limit of the MIL-L-46167B product.
Technical Paper

A PC-Based Model for Predicting NOx Reductions in Diesel Engines

1996-10-01
962060
A menu-driven, PC-based model, ALAMO_ENGINE, has been developed to predict the nitrogen oxides (NOx) reductions in direct-injected, diesel engines due to exhaust gas recirculation (EGR), emulsified fuels, manifold or in-cylinder water injection, fuel injection timing changes, humidity effects, and intake air temperature changes. The approach was to use a diesel engine cycle simulation with detailed gas composition calculations for the intake and exhaust gases (including EGR, water concentration, fuel-type effects, etc.), coupled with a code to calculate stoichiometric, adiabatic flame temperatures and expressions that correlate measured NOx emissions with the flame temperature. Execution times are less than 10 seconds on a 486-66 MHz PC.
X