Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

Application of Real-World Wind Conditions for Assessing Aerodynamic Drag for On-Road Range Prediction

2015-04-14
2015-01-1551
Aerodynamic evaluation of vehicles using static yaw angle changes in wind tunnel testing and numerical simulation has been used as standard practice for evaluating vehicle performance under a range of wind conditions. However, this approach does not consider dynamic wind effects coming from changing wind conditions, passing other vehicles and roadside obstacles, and transient non-uniform wind conditions coming from environmental turbulence. In previous work by the authors, computational fluid dynamics (CFD) simulation methodology for considering dynamic wind conditions and on-road turbulence was demonstrated, showing the important effects of the wind conditions on the vehicle aerodynamics. The technique allows the vehicle to be tested under a range of transient gust conditions, also accounting for wind turbulence coming from upstream vehicles and natural environmental wind fluctuations.
Technical Paper

Aerodynamic Simulation of a Standalone Rotating Treaded Tire

2017-03-28
2017-01-1551
The aerodynamics of a rotating tire can contribute up to a third of the overall aerodynamic force on the vehicle. The flow around a rotating tire is very complex and is often affected by smallest tire features. Accurate prediction of vehicle aerodynamics therefore requires modeling of tire rotation including all geometry details. Increased simulation accuracy is motivated by the needs emanating from stricter new regulations. For example, the upcoming Worldwide harmonized Light vehicles Test Procedures (WLTP) will place more emphasis on vehicle performance at higher speeds. The reason for this is to bring the certified vehicle characteristics closer to the real-world performance. In addition, WLTP will require reporting of CO2 emissions for all vehicle derivatives, including all possible wheel and tire variants. Since the number of possible derivatives can run into the hundreds for most models, their evaluation in wind tunnels might not be practically possible.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
X