Refine Your Search

Topic

Author

Search Results

Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Vehicle Underbody Structural Performance Prediction During Waterfording Events Using A One Way Coupled CFD-CAE Approach

2023-04-11
2023-01-0609
Water fording events are one of the most challenging situations that vehicles undergo during their lifetime. During these events the underbody components (e.g. Front fascia, Bellypan, wheel liner etc.) are subject to very high loads. Typically, vehicle water fording tests are performed for various depths of water at prescribed vehicle speeds. Water fording tests are usually carried out during the proto phase of the vehicle development program to ensure acceptable performance. If issues are discovered, making changes to the fascia or body panels are typically very expensive. To avoid late changes, a fully virtual methodology was developed to facilitate vehicle water fording performance. The simulation is targeted to evaluate multiple aspects such as air induction system and estimation of hydrodynamic loads on body panel components.
Journal Article

Utilization of Bench Testing in Vehicle Thermal System Development for Extreme Cold Ambient Condition

2020-04-14
2020-01-1390
Automotive thermal systems are becoming complicated each year. The powertrain efficiency improvement initiatives are driving transmission and engine oil heaters into coolant network design alternatives. The initiatives of electrified and autonomous vehicles are making coolant networks even more complex. The coolant networks these days have many heat exchangers, electric water pumps and valves, apart from typical radiators, thermostat and heater core. Some of these heat exchangers, including cabin heaters deal with very small amount of coolant flow rates at different ambient conditions. This paper describes how viscosity can be a major reason for simulation inaccuracy, and how to deal with it for each component in the coolant network. Both experimental and computational aspects have been considered in this paper with wide range of ambient temperatures.
Technical Paper

Torque Converter Modeling for Torque Control of Hybrid Electric Powertrains

2024-04-09
2024-01-2780
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed.
Journal Article

The Application of Simplified Loadpath Models to Improve Body Structure Knowledge

2020-04-14
2020-01-0912
Simplified Loadpath Models (SLMs) of the advanced body in white (BIW) design concept provide a highly flexible and rapid platform to explore body structure loadpath alternatives and conduct performance:weight optimization. The SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. While the benefits of loadpath optimization through Beam element parameter variation is well-documented and applied extensively for these types of models, this paper covers another valuable benefit of the SLMs; to provide a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes. This data provides valuable information that can be leveraged to support more intelligent and efficient body structure joint designs.
Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
Technical Paper

Simplified Approach for Optimizing Lightening Holes in Truck Frames for Durability Performance

2017-03-28
2017-01-1345
During development of new vehicles, CAE driven optimizations are helpful in achieving the optimal designs. In the early phase of vehicle development there is an opportunity to explore shape changes, gage reduction or alternative materials as enablers to reduce weight. However, in later phases of vehicle development the window of opportunity closes on most of the enablers discussed above. The paper discusses a simplified methodology for reducing the weight in design cycle for truck frames using parametric Design of Experiments (DOE). In body-on-frame vehicles, reducing the weight of the frame in the design cycle without down gaging involves introducing lightening holes or cutouts while still maintaining the fatigue life. It is also known that the lightening holes might cause stress risers and be detrimental to the fatigue life of the component. Thus the ability to identify cutout locations while maintaining the durability performance becomes very critical.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Parametric Modelling and Performance Analysis of HVAC Defroster Duct Using Robust Optimization Methodology

2020-04-14
2020-01-1250
Nowadays development of automotive HVAC is a challenging task wherein thermal comfort and safety are very critical factors to be met. HVAC system is responsible for the demisting and defrosting of the vehicle’s windshield and for creating/maintaining a pleasing environment inside the cabin by controlling airflow, velocity, temperature and purity of air. Fog or ice which forms on the windshield is the main reason for invisibility and leads to major safety issues to the customers while driving. It has been shown that proper clear visibility for the windshield could be obtained with a better flow pattern and uniform flow distribution in the defrost mode of the HVAC system and defrost duct. Defroster performance has received significant attention from OEMs to meet the specific global performance standards of FMVSS103 and SAE J902. Therefore, defroster performance is seriously taken into consideration during the design of HVAC system and defroster duct.
Technical Paper

Optimum Shifting of Hybrid and Battery Electric Powertrain Systems with Motors before and after a Transmission

2024-04-09
2024-01-2143
This paper proposes an optimization-based transmission gear shifting strategy for electrified powertrains with a transmission. With the demand for reduced vehicle emissions, electrified propulsion systems have garnered significant attention due to their potential to improve vehicle efficiency and performance. An electrified propulsion system architecture of significance includes multiple electric motors and a transmission where some driveline actuators can transmit torque through changing gear ratios. If there is at least one electric motor arranged before the input of the transmission and at least one after the transmission output, a unique design opportunity arises to shift gears in the most energy efficient manner.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Optimization of MAC Side Window Demister Outlet by Parametric Modelling through DFSS Approach

2015-04-14
2015-01-0363
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Numerical Investigation of Flow Induced Excitations in a Torque Converter

2017-03-28
2017-01-1115
This study analyzes the flow dynamics of a fluid within an operating torque converter. Transient computational fluid dynamics (CFD) simulations have been carried out with prescribed torque converter motions using commercially available CFD software. The analysis computes torque converter excitation forces that predict flow induced excitations during converter operation. In this study, various torque converter designs are compared and assessed with the aim of limiting flow induced excitations.
Technical Paper

New Half Shaft Bench Test Methodology for NVH Characterization

2019-06-05
2019-01-1558
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Technical Paper

Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System

2018-04-03
2018-01-1195
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor during both steady-state and transient driving cycles.
X