Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Vehicle Underbody Structural Performance Prediction During Waterfording Events Using A One Way Coupled CFD-CAE Approach

2023-04-11
2023-01-0609
Water fording events are one of the most challenging situations that vehicles undergo during their lifetime. During these events the underbody components (e.g. Front fascia, Bellypan, wheel liner etc.) are subject to very high loads. Typically, vehicle water fording tests are performed for various depths of water at prescribed vehicle speeds. Water fording tests are usually carried out during the proto phase of the vehicle development program to ensure acceptable performance. If issues are discovered, making changes to the fascia or body panels are typically very expensive. To avoid late changes, a fully virtual methodology was developed to facilitate vehicle water fording performance. The simulation is targeted to evaluate multiple aspects such as air induction system and estimation of hydrodynamic loads on body panel components.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
Technical Paper

Three-Dimensional Thermal Simulation of a Hybrid Vehicle with Energy Consumption Estimation and Prediction of Battery Degradation under Modern Drive-Cycles

2023-04-11
2023-01-0135
As more electric vehicles (BEV, HEV, PHEV, etc.) are adopted in the upcoming decades, it is becoming increasingly important to conduct vehicle-level thermal simulations under different drive-cycle conditions while incorporating the various subsystem thermal losses. Thermal management of the various heat sources in the vehicle is essential both in terms of ensuring passenger safety as well as maintaining all the subsystems within their corresponding safe temperature limits. It is also imperative that these thermal simulations include energy consumption prediction, while considering the effect of battery degradation both in terms of increased thermal losses as well as reduction in the vehicle’s range. For this purpose, a three-dimensional transient thermal analysis framework was coupled with an electrochemical P2D-based battery model and a vehicle dynamics model to test different scenarios and their effect on a hybrid vehicle’s range and the lithium-ion battery life.
Journal Article

The Application of Simplified Loadpath Models to Improve Body Structure Knowledge

2020-04-14
2020-01-0912
Simplified Loadpath Models (SLMs) of the advanced body in white (BIW) design concept provide a highly flexible and rapid platform to explore body structure loadpath alternatives and conduct performance:weight optimization. The SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. While the benefits of loadpath optimization through Beam element parameter variation is well-documented and applied extensively for these types of models, this paper covers another valuable benefit of the SLMs; to provide a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes. This data provides valuable information that can be leveraged to support more intelligent and efficient body structure joint designs.
Technical Paper

Sliding Mesh Fan Approach Using Open-Source Computational Fluid Dynamics to Investigate Full Vehicle Automotive Cooling Airflows

2023-04-11
2023-01-0761
Cooling airflow is an essential factor when it comes to vehicle performance and operating safety. In recent years, significant efforts have been made to maximize the flow efficiency through the heat exchangers in the under-hood compartment. Grille shutters, new fan shapes, better sealings are only some examples of innovations in this field of work. Underhood cooling airflow simulations are an integral part of the vehicle development process. Especially in the early development phase, where no test data is available to verify the cooling performance of the vehicle, computational fluid dynamics simulations (CFD) can be a valuable tool to identify the lack of fan performance and to develop the appropriate strategy to achieve airflow goals through the heat exchangers. For vehicles with heat exchangers in the underhood section the airflow through those components is of particular interest.
Technical Paper

Simplified Approach for Optimizing Lightening Holes in Truck Frames for Durability Performance

2017-03-28
2017-01-1345
During development of new vehicles, CAE driven optimizations are helpful in achieving the optimal designs. In the early phase of vehicle development there is an opportunity to explore shape changes, gage reduction or alternative materials as enablers to reduce weight. However, in later phases of vehicle development the window of opportunity closes on most of the enablers discussed above. The paper discusses a simplified methodology for reducing the weight in design cycle for truck frames using parametric Design of Experiments (DOE). In body-on-frame vehicles, reducing the weight of the frame in the design cycle without down gaging involves introducing lightening holes or cutouts while still maintaining the fatigue life. It is also known that the lightening holes might cause stress risers and be detrimental to the fatigue life of the component. Thus the ability to identify cutout locations while maintaining the durability performance becomes very critical.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Quantification of Clamp Loss and Subsequent Loosening of Automotive Hub-Knuckle Joints under Time-Varying Proving Ground Loading

2020-04-14
2020-01-0181
Threaded fasteners or bolted joints are used extensively in automotive assemblies. There are standard procedures to evaluate joint performance under block cycles or road loads. The deciding load case for such joint design is slippage analysis of the joint. There are studies done to evaluate the theoretical and experimental behavior of these joints. There are different ways of understanding the interaction between the bolt and the nut under different loading scenarios. However, none have provided a satisfactory method of quantifying bolt loosening or loss of clamp load under cyclic loading, where no slippage is observed. Under varying loads, initial relaxation of the joint is followed by a loss of clamping load. Below a critical value, complete loss of clamping load progresses very rapidly and this results in a loose joint.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

New Method for Decoupling the Powertrain Roll Mode to Improve Idle Vibration

2019-06-05
2019-01-1588
Modern engines have high torque outputs and have low RPM due to increased demand for fuel efficiency. Vibrations caused by such engines have to be mitigated. Decoupling the roll mode from the remaining five rigid body modes results in a response which is predominantly about the torque roll axis (TRA) and helps reduce vibrations. Therefore, placing the mounts on the TRA early in the design phase is crucial. Best NVH performance can be obtained by optimizing the powertrain mount parameters viz; Position, Orientation and Stiffness. Many times, packaging restricts the mounts to be placed about the TRA resulting in degradation in NVH performance. Assuming that the line through the engine mount (Body side) centers is the desired TRA, we propose a novel method of shifting the TRA by adding mass modifying the powertrain inertia such that the new TRA is parallel to and on top to the desired TRA. This in turn will decouple the roll mode and reduce vibrations.
Technical Paper

New Half Shaft Bench Test Methodology for NVH Characterization

2019-06-05
2019-01-1558
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.
Journal Article

Longitudinal Vehicle Dynamics Modeling for AWD/4WD Vehicles to Study Torque Split between Front and Rear Axles

2020-04-14
2020-01-1410
All-wheel Drive (AWD) is a mature technology and most automobile manufacturers offer this feature on their vehicles. Improved traction, enhanced vehicle stability, and better handling are some of the key characteristics of AWD vehicles which are achieved by distributing the appropriate level of torque to the front and rear axles. Accurately capturing the torque split between the two axles is essential for sizing of driveline components like gears, bearings, and shafts. Traditionally, the torque split is considered to be either 50-50%, or solely proportional to the static weight distribution between the two axles. Design decisions are made based on historical test data. In this paper a longitudinal vehicle dynamics model for AWD systems is proposed to understand the influence of various key factors such as dynamic weight transfer, compliance of driveline components, and changing tire radius on the torque split.
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Technical Paper

Development of a Nonlinear, Hysteretic and Frequency Dependent Bushing Model

2015-04-14
2015-01-0428
An accurate bushing model is vital for vehicle dynamic simulation regarding fatigue life prediction. This paper introduces the Advanced Bushing Model (ABM) that was developed in MATLAB® environment, which gives high precision and fast simulation. The ABM is a time-domain model targeting for vehicle durability simulation. It dynamically captures bushing nonlinearities that occur on stiffness, damping and hysteresis, through a time-history-based fitting technique, compensated with frequency dependency functionality. Among the simulated and test-collected bushing loads, good correlations have been achieved for elastomer bushings and hydraulic engine mounts and validated with a random excitation signal. This ABM model has been integrated into a virtual shaker table (from a parallel project) as the engine mount model to simulate the mount load, and has shown acceptable prediction on fatigue damage.
Technical Paper

Cooling Capable Vehicle Front End Concepts Development: Response Surface Approach

2018-04-03
2018-01-1194
The paper describes a process for rapid development of cooling capable front-end concepts for a vehicle based on an architecture, and a tool (Vehicle Parametric Model for Cooling) developed to execute the process. The process involves upfront definition of allowable ranges of several parameters related to the vehicle front end that affect cooling. The tool is based on characterizing airflow through Computational Fluid Dynamics (CFD) simulations and engine coolant temperature through one-dimensional (1D) thermal balance methods over the architectural domain in the form of a multi-parameter Response Surface using the Approximation Model provided by Isight. The number of sampling points needed for the Approximation is minimized by employing Design of Experiments (DOE) methods, while ensuring sufficient accuracy consistent with the goals of intended use of the Tool.
X