Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“Active Mass Absorber” at a 4×4 Transmition System

2003-11-18
2003-01-3682
The extensive use of rotative machines in the diverse branches of the modern world has made the rising undesirable mechanical and acoustic vibration levels to be a problem of special importance for the machines normal operation as for the communities that are each time more affected by the problem. It makes the study of vibration and acoustic phenomena also to be even more important and the applications of its concepts more sophisticated. Several are the concepts used for decreasing vibration levels, like common dampers, hydraulic dampers, active dampers, natural frequencies changes and others. The choice of use of one or another depends greatly on the engineering possibilities (weight, energy, physical space, other components functional interference, vibration levels, etc.) as well as the cost of implementation of each one.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
Technical Paper

Wheel Fight Objective Metric Development

2007-05-15
2007-01-2391
Wheel Fight is the undesirable rotational response of a vehicle's steering wheel due to road input at any or all of the road/wheel tire patches. The type of road input that will cause wheel fight comes in two forms: continuous rough road surfaces such as broken concrete or transient inputs such as pot-holes and tar strips. An objective method to quantify a vehicle's wheel fight sensitivity would be of great value to the vehicle development engineer. To that end, a study was conducted on Ford's Vehicle Vibration Simulator (VVS) to gather subjective responses and use those as a basis for correlation to an objective metric. One road surface known to induce wheel fight consists of using a rubber strip and driving over it while impacting only one side of the vehicle. Under this condition, steering wheel data was acquired on five different light trucks from which paired comparison studies were conducted.
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Vehicle System Modeling for Computer-Aided Chassis Control Development

2005-04-11
2005-01-1432
As the complexity of automotive chassis control systems increases with the introduction of technologies such as yaw and roll stability systems, processes for model-based development of chassis control systems becomes an essential part of ensuring overall vehicle safety, quality, and reliability. To facilitate such a model-based development process, a vehicle modeling framework intended for chassis control development has been created. This paper presents a design methodology centered on this modeling framework which has been applied to real world driving events and has demonstrated its capability to capture vehicle dynamic behavior for chassis control development applications.
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Vehicle Path-Tracking Control with Dual-Motor SBW System

2023-04-11
2023-01-0692
Improvement of vehicle path-tracking performance not only affects the vehicle driving safety and comfort but is also essential for autonomous driving technology. The current research focuses on vehicle path-tracking control study and application of dual-motor SBW system. The preview driver model is developed by considering the lateral and yaw tracking. MPC (model predictive control) and LQR (linear quadratic regulator) path following controllers are developed to compare the tracking control performance. A steer-by-wire (SBW) system of dual-motor configuration is designed with permanent magnet synchronous motor (PMSM) control scheme. Finally, the proposed control methods are verified with different driving cases, which shows that the system can effectively achieve small tracking errors in the simulation, and also can be applied in the future autonomous driving or advanced driver assistance system to maintain the lateral and yaw errors within a safe range during path-tracking.
Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
Technical Paper

Vehicle Dynamic Handling Computer Simulation - Model Development, Correlation, and Application Using ADAMS

1986-03-01
860574
A new capability to simulate transient, non-linear handling maneuvers analytically, and dynamically display the vehicle's response with 3-dimensional animated graphics has been developed and is being utilized by Ford Motor Company. The implementation of this capability, which includes complete affects of steering and suspension kinematics, individual bushing compliances, non-linear shock absorber and jounce bumper characteristics, and transient tire force and moment data, represents a new frontier in the development of light truck and passenger car vehicles. Development of this model lends itself to analytical evaluations of numerous types of handling related maneuvers such as classical or linear behavior, transient and limit stability analysis, and special situations such as cross wind stability, torque steer, and vehicle drift characteristics.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Journal Article

Using Generic Tyre Parameters for Low Friction Surfaces in Full Vehicle Simulations

2017-03-28
2017-01-1506
An intervention of vehicle stability control systems is more likely on slippery surfaces, e.g. when the road is covered with snow or ice. Contrary to testing on dry asphalt, testing on such surfaces is restricted by weather and proving grounds. Another drawback in testing is the reproducibility of measurements, since the surface condition changes during the tests, and the vehicle reaction is more sensitive on slippery surface. For that, simulation enables a good pre-assessment of the control systems independent from testing conditions. Essential for this is a good knowledge about the contact between vehicle and road, meaning a good tyre model and a reasonable set of tyre model parameters. However, the low friction surface has a high variation in the friction coefficient. For instance, the available lateral acceleration on scraped ice could vary between 0.2 and 0.4 g within a day. These facts lead to the idea of using generic tyre parameters that vary in a certain range.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
X