Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Optimization of Race Engines Through an Extended Quasi Steady State Lap Time Simulation Approach

2018-04-03
2018-01-0587
Minimizing the lap time for a given race track is the main target in racecar development. In order to achieve the highest possible performance of the vehicle configuration the mutual interaction at the level of assemblies and components requires a balance between the advantages and disadvantages for each design decision. Especially the major shift in the focus of racecar powerunit development to high efficiency powertrains is driving a development of lean boosted and rightsized engines. In terms of dynamic engine behavior the time delay from requested to provided torque could influence the lap time performance. Therefore, solely maximizing the full load behavior objective is insufficient to achieve minimal lap time. By means of continuous predictive virtual methods throughout the whole development process, the influence on lap time by dynamic power lags, e.g. caused by the boost system, can be recognized efficiently even in the early concept phase.
Technical Paper

Vehicle Study on the Impact of Diesel Fuel Sulfur Content on the Performance of DeNOX Catalysts and the Influence of DeNOX Catalysts on Particle Size and Number

2000-06-19
2000-01-1877
A vehicle investigation programme was initiated to evaluate the influence of diesel fuel sulfur content on the performance of a DeNOx catalyst for NOx control. The programme was conducted with a passive DeNOx catalyst, selected for its good NOx reduction performance and two specially prepared fuels with different sulfur contents. Regulated emissions were measured and analysed during the course of the programme. The NOx conversion efficiency of the DeNOx catalyst increased from 14 to 26% over the new European test cycle when the sulfur content of the diesel fuel was reduced from 49 to 6 wt.-ppm. In addition the number and size of particles produced using 6 wt.-ppm sulfur fuel were measured by two different techniques: mobility diameter by SMPS and aerodynamic diameter by impactor. The influence of the assumed density of the particulate on the apparent diameters measured by the two techniques is discussed.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Timing Protection in Multifunctional and Safety-Related Automotive Control Systems

2009-04-20
2009-01-0757
With the ever increasing amount of available software processing resources in a vehicle, more and more high-level algorithms are emerging to improve the existing systems in a car. Often these algorithms only need a platform with a bus connection and some resources such as processing power and memory space. These functions are predestined to be integrated into existing systems that have free resources. This paper will examine the role of time protection in these multi-algorithm systems and describe what timing protection means and why it is required. The processing time will be partitioned to the different processing levels like interrupts, services and tasks. The problems of timing protection will be illustrated as well as its limitations. The conflict between real-time requirements and timing protection will be shown. Finally Autosar will be examined with focus on timing protection and applicability in actual development projects.
Journal Article

Timing Analysis for Hypervisor-based I/O Virtualization in Safety-Related Automotive Systems

2017-03-28
2017-01-1621
The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
Technical Paper

The Direct Injection System of the 2001 Audi Turbo V8 Le Mans Engines

2002-12-02
2002-01-3357
Audi's successful 3.6 L V8 twin turbo Le Mans engine of 2000 has been developed to fuel direct injection (FSI®). Most of the modifications have been done in the area of the cylinderhead. Simulation and flow test bench work helped to define the basic parameters. The FSI® engine has a reduction in fuel consumption of 8 - 10 %, up to 9 % more torque throughout the entire speed range and much better driveability.
Technical Paper

The Audi Aeroacoustic Wind Tunnel: Final Design and First Operational Experience

2000-03-06
2000-01-0868
Audi's new full scale aeroacoustic wind tunnel is under full operation now. The new facility is designed for full scale automotive testing of aerodynamics and aeroacoustics for vehicles up to 3 m2 frontal area at wind speeds up to 300 kph. The highlights are the unique ground simulation system with boundary layer suction and a 5-belt-system, and the extremely low background noise of only 60 dB(A) at 160 kph. First the background of the project is illustrated and the need for the special features of the tunnel is deduced form the industrial requirements. Then an overview of the facility design is given with a detailed description of the key technical components. The calibration of the self-correcting test section will be discussed and the physical background for it will be examined more closely. For the calibrated wind tunnel the results of two correlation tests including open jet as well as closed wall wind tunnels show a reasonable conformity.
Technical Paper

Temperature Loads in Headlamps

2002-03-04
2002-01-0912
Today's car designers ask for compact and light-weighted headlamps with several new functional features and special stylistic elements. This yields in new lighting technology such as modern free form and ellipsoid module reflectors with small dimensions and the need to use highly sophisticated materials. Both of this is sensitive to the amount of temperature and at a critical level may cause irreversible damage. Therefore, it is necessary to predict temperature loads at an early development stage in order to ensure new headlamp concepts and to shorten development time. An approach to calculate and analyze temperatures in headlamps by continuum fluid dynamic methods (CFD) is presented which can be compared and correlated to measurements carried out with infrared thermography and demonstrates the benefit of this method.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

Synergies of Variable Valve Actuation and Direct Injection

2002-03-04
2002-01-0706
The main goal in the development of new automobile SI engines is to significantly reduce fuel consumption. To this end both, variable valve actuation and direct gasoline injection, are being pursued as new engine concepts. Both approaches appear to offer approximately the same potential to reduce fuel consumption. The development so far is creating the impression of two competing technical concepts with no obvious way to combine them [1]. The two engine concepts, however, can be combined, although it is often objected that their combination would only yield marginal additional potential. That is true to the extent that the advantages of dethrottling offered by both of the concepts can only be counted once in terms of overall potential. But there is a number of additional effects to be taken into account. This Paper represents an analysis of the individual potential of the two approaches as well as an estimation of their combined potential.
Technical Paper

Specific Durability Testing with FEV Master Program

2010-04-12
2010-01-0922
During the past years, there has been an increasing tendency to seriously question and break up old and ingrained structures in combustion engine testing. The reason for this is the continuously increasing number of engine and vehicle variants and a variety of applications resulting from it, which significantly push up development costs and times when carrying out the classical testing patterns. The following article by FEV Motorentechnik GmbH introduces a comprehensive test methodology for purposeful endurance testing of modern drive units (in particular from the fields of passenger cars and commercial vehicles). The procedure and the testing philosophy are explained in detail, illustrated by a concrete development example.
Technical Paper

Sound Quality and Engine Performance Development Utilizing Air-to-Air Simulation and Interior Noise Synthesis

2003-05-05
2003-01-1652
The sound quality and performance of an automotive engine are both significantly influenced by the “air-to-air” system, i.e., the intake system, the exhaust system, and the engine gas dynamics. Only a full systems approach can result in an optimized air-to-air system, which fulfills engine performance requirements, overall sound pressure level targets for airborne vehicle noise, as well as sound quality demands. This paper describes an approach, which considers the intake system, engine, and exhaust system within one CAE model that can be utilized for engine performance calculations as well as acoustic simulations. Examples comparing simulated and measured sound are discussed. Finally, the simulated sound (e.g., at the tailpipe of the exhaust system) is combined with an interior noise simulation technique to evaluate its influence inside the vehicle's interior.
Technical Paper

Simulation of Endurance and Thermo Cycle Testing for Highly Loaded HSDI Diesel Cylinder Heads

2001-10-01
2001-01-3226
Due to today's demands to reduce cost and product time to market, engineering procedures are increasingly using more sophisticated simulation techniques, instead of validation testing. Early implementation of CAE methods yield higher quality products, even with first prototypes, reducing the design iterations required to reach production quality. The strategy is to conduct specific evaluations of a realistic representation of the product while focusing on the key boundary conditions necessary to extract fatigue effects. Discussed in this paper are adequate CAE methods for early identification, evaluation and removal of conceptual and local structural weaknesses. Possible solutions gained from a computational optimization process are discussed for highly loaded HSDI diesel cylinder heads as a representative example.
Technical Paper

Reference Static and Dynamic Pressures in Automotive Wind Tunnels

2003-03-03
2003-01-0428
The reference pressures are determined in automotive wind tunnels by measurement of pressures and pressure differences at upstream positions along the wind tunnel nozzle. For closed wall wind tunnels usually the so called nozzle method is used, where the volume flux is calculated from a pressure difference measured at the nozzle contour and a calibration factor determined in the empty test section. For open jet wind tunnels a choice is available between nozzle and plenum method. For the plenum method the reference static pressure is taken from the plenum chamber and the dynamic pressure also refers to the plenum conditions. The static reference pressure in closed wall tunnels is calculated by subtracting the dynamic pressure from the total pressure in the settling chamber. In this paper, the definitions and the differences between the two methods are discussed in detail.
Journal Article

Quantitative Fuel-Air-Mixing Measurements in Diesel-Like Sprays Emanating from Convergent and Divergent Multi-Layer Nozzles

2012-04-16
2012-01-0464
It is the objective of this work to characterize mixture formation in the sprays emanating from Multi-Layer (ML) nozzles under approximately engine-like conditions by quantitative, spatially, and temporally resolved fuel-air ratio and temperature measurements. ML nozzles are cluster nozzles which have more than one circle of orifices. They were introduced previously, in order to overcome the limitations of conventional nozzles. In particular, the ML design yields the potential of variable spray interaction, so that mixture formation could be controlled according to the operating condition. In general, it was also a primary aim of the cluster-nozzle concepts to combine the enhanced atomization and pre-mixing of small nozzle holes with the longer spray penetration lengths of large holes. The applied diagnostic, which is based on 1d spontaneous Raman scattering, yields the quantitative stoichiometric ratio and the temperature in the vapor phase.
Technical Paper

Production of Autobody Components with Hydromechanical Sheet Forming (AHU®)

2002-07-09
2002-01-2026
The lightweight construction strategies that are demanded by the automobile industry are being employed more and more. These strategies lead to the increasing importance of the forming method and types of materials used. Especially forming technologies based on liquid media have the potential to meet these demands. These forming technologies make it possible to produce parts that have both, more complex geometries and optimized characteristics. This forming technology constitutes an intelligent process management including the significant materials parameters and behavior, the simulation and some new developments especially for the optimization of the quality and the cycle time. Hydromechanical sheet forming (AHU®) is an alternative production (forming) process, with very interesting results and developments for the manufacture of specific automobile components.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
Technical Paper

Prediction of Hydrodynamic Bearing Behaviour for Pre-layout of Cranktrain Dimensions

2010-10-25
2010-01-2186
Calculating the bearing reliability and behavior is one of the primary tasks which have to be performed to define the main dimensions of the cranktrain of an internal combustion engine. Since the bearing results are essential for the pre-layout of the cranktrain, the conclusion on the bearing safety should be met as early as possible. Therefore detailed simulations like T-EHD or EHD analysis may not be applied to define the dimensions in such an early development phase. In the frame of this study a prediction methodology, based on a HD bearing approach, for bearing reliability of inline-4 crankshafts of passenger cars is proposed. In this way not only the design phase is shortened but also achieving the optimal solution is simplified. Moreover the requirement of a CAD model is eliminated for the preliminary design phase. The influencing parameters on the bearing behavior are first selected and divided into two groups: geometry and loading.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

2009-06-15
2009-01-1796
In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
X