Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Two-Stage Variable Compression Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces

2009-04-20
2009-01-1457
By variation of the compression ratio the fuel consumption of high boosted gasoline engines can be reduced, due to operating with higher compression ratios at low load compared to an engine with fixed compression ratio. The two-stage VCR-system enables a high share of fuel saving potential relative to full variable systems. Considering a low cost manufacturability and a beneficial integratability into common engine architectures the length-adjustable conrod using an eccentric piston pin in the small eye has proved as the best concept. The adjustment is performed by a combination of gas and mass forces. This article describes the design of such a two-stage VCR-system as well as the functional testing under motored and fired engine operating conditions.
Technical Paper

State Machine-Based Control Strategy for a Gasoline Fueled PEMFC APU System

2004-03-08
2004-01-1475
A fuel cell based Auxiliary Power Unit (APU) represents a rather complex technical system consisting of different subsystems, components and low-level controllers. Particularly in the case of gasoline-fueled systems, a sophisticated supervisory control is needed to manage the sequential control and to achieve fault tolerant and fail-safe operation. In this paper, a state machine-based APU control concept is presented, offering a transparent and modular structure. In addition to a superior control system (top level supervisor) that manages the overall strategies and the interaction of all subsystems, each subsystem is equipped with its own subsystem control (second level supervisor). This controller is responsible for all subsystem specific issues. The APU control concept was implemented using Matlab®/Simulink® and applied on a rapid prototyping controller unit.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

2001-03-05
2001-01-0233
In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Technical Paper

HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model

2004-03-08
2004-01-1362
The modern engine design process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive real-time simulation tools that represent the entire powertrain can likely contribute to improving the efficiency of the calibration process. Engine models, which are purely based on physical first principles, are usually not capable of real-time applications, especially if the simulation is focused on cold start and warm-up behavior. However, the initial data definition for the ECU using a Hardware-in-the-Loop (HiL)-Simulator requires a model with both real-time capability and sufficient accuracy. The use of artificial intelligence systems becomes necessary, e.g. neural networks. Methods, structures and the realization of a hybrid real-time model are presented in this paper, which combines physical and neural network models.
Technical Paper

Compressor Expander Units for Fuel Cell Systems

2000-03-06
2000-01-0380
In this paper different compressor/expander concepts including mechanical superchargers, turbochargers and two-stage charging concepts are analysed with regard to their suitability for fuel cell applications. Special attention is focused on system designs which use the energy of the tail gases for driving the compressor. The net efficiencies of different system concepts at full load were calculated with a simulation model, based on Matlab/Simulink‘ and show, that with a single stage turbocharger in combination with a tail gas burner good efficiencies and high power densities can be obtained at a pressure level of more than 2.5 bar.
Technical Paper

CFD Simulation of Diesel Injection and Combustion

2002-03-04
2002-01-0945
A Diesel spray and combustion model has been connected to the CFD-code StarCD. The paper provides an overview of the submodels implemented, which account for liquid core atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. Auto-ignition and combustion is described by the Representative Interactive Flamelet (RIF)-model. This concept allows to separate the fluid dynamics from the chemical processes with their significantly smaller timescales, and enables to account for a sufficiently large number of chemical species and reactions in order to predict pollutant formation such as NOx and soot. The CFD-predictions are extensively compared to experimental data. Spray model validation cases focus on the distribution of droplet sizes, velocities and fuel vapor in free and impinging sprays.
Technical Paper

CAE-Based Port Development and Flow Design for SI Engines

2005-04-11
2005-01-0243
Today's engine and combustion process development is closely related to the port layout. Combustion and emission performance are coupled to the intensity of turbulence, the quality of mixture formation or the distribution of residual gas - consequently depending on in-cylinder charge motion, which is mainly determined by the port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. It is between these two mostly opposing aims that an optimized trade-off must be found. Traditionally, an experimental investigation carried out on flow test benches defines the port layout. The results of these investigations are global flow parameters, describing flow coefficient and swirl and tumble intensity. The ongoing progress for the development of CAE tools has led to the creation of new methodologies. CFD calculations provide insight into the details of port and in-cylinder flow, thus enabling efficient optimization.
Technical Paper

Boosting and Direct Injection -Synergies for Future Gasoline Engines

2005-04-11
2005-01-1144
To further reduce the Corporate Average Fuel Economy in order to meet the ACEA target values agreed upon, more intense efforts are required in the areas of engine and drive train development by 2008 or 2012. Boosted gasoline engines with a high specific output or torque have to be considered the tools that lead to this goal, while combining driving pleasure and consumption reduction in an ideal way. FEV has thoroughly analyzed this kind of concept and analyzed the fundamental synergy effects resulting from the additional combination of supercharging with direct injection in close detail.
Technical Paper

Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation

2007-04-16
2007-01-1412
Engine processes are subject to cyclic fluctuations, which a have direct effect on the operating and emission behavior of the engine. The fluctuations in direct injection gasoline engines are induced and superimposed by the flow and the injection. In stratified operation they can cause serious operating problems, such as misfiring. The current state of knowledge on the formation and causes of cyclic fluctuations is rather limited, which can be attributed to the complex nature of flow instabilities. The current investigation analyzes the cyclic fluctuations of the in-cylinder charge motion and the mixture formation in a direct injection gasoline engine using laser-optical diagnostics and numerical 3D-calculation. Optical measurement techniques and pressure indication are used to measure flow, mixture formation, and combustion processes of the individual cycles.
X