Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Electrical System Computer Aided Design (VESCAD) Tool

1993-03-01
930841
The Vehicle Electrical System Computer Aided Design (VESCAD) tool is a means by which the vehicle electrical system, including all wiring and the components attached to wiring can be laid out over an outline of the planform (looking down on the vehicle) view of the vehicle. This graphical representation of the vehicle electrical system is linked to a database that contains the definition of all the wiring of the vehicle plus electrical component attributes. The vehicle electrical system can be composed and completely manipulated graphically, using a mouse, and the database is dynamically changed, including automatic re-routing of the wiring in the wiring harnesses. A complete series of reports can be generated once a vehicle electrical system is configured using VESCAD. All of the reports can be keyed by component(s), harness(es), subsystem(s) or the entire vehicle.
Technical Paper

Vehicle Dynamics Fingerprint Process

1999-03-01
1999-01-0117
The dynamic characteristics of a vehicle are an important part of the driver's experience. Ford Motor Company is actively pursuing a leadership role in this arena. To achieve this goal, all the necessary information to complete the vehicle dynamics picture of a vehicle must be gathered in an efficient and well-organized manner. A process was developed to fingerprint a vehicle so that this information could drive vehicle tuning, new Computer Aided Engineering (CAE) models, correlate existing CAE models, support problem resolution and conduct target setting. This paper will discuss a Vehicle Dynamics Fingerprint Process in detail and explain the steps involved.
Technical Paper

Vehicle Disc Brake Squeal Simulations and Experiences

1999-05-18
1999-01-1738
Brake related warranty costs are a major concern to the automotive industry. Large part of these costs are due to noise, more particularly due to the brake squeal complaints. Computer-aided engineering solutions have attracted a lot of attention from the engineering and development community for more effective brake product development. Recently, three brake squeal analysis methods were implemented on disc type brakes in a vehicle program at Ford. This paper summarizes the results and documents the experience obtained during implementation in the vehicle CAE process.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Using CAE to Guide Passenger Airbag Door Design for Optimal Head Impact Performance

1997-02-24
970772
The increased focus on occupant protection by automobile manufacturers combined with incessant consumer demand for safety features such as dual airbags has posed design engineers with major challenges in the field of Instrument Panel (IP) design. Typically, airbags are designed to deploy when the speed of the automobile is above 13 mph in a frontal impact. The airbag door should meet head impact requirements for unbelted occupants involved in low speed impacts (<15mph) when airbags are not deployed. This paper describes how computer aided engineering (CAE) simulation techniques were used in improving the design of the passenger airbag door of a full size van for head impact performance. Fewer tests were conducted primarily for validation, which resulted in significantly less prototypes, costs and time.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Thermal Durability Testing for Underbody Fibrous Heat Shields

1995-02-01
950620
The design and composition of heat shields is becoming a major factor in the design of future automobiles. The optimization of heat insulation materials is crucial in keeping size, mass, and cost to a minimum. The purpose of this paper is to describe the testing of four different fibrous insulating materials simulating 150,000 miles of the Underbody heat shielding that a light duty truck may experience. The materials were tested before and after the thermal durability experiment to show the degraded conduction performance of each sample.
Technical Paper

The Use of Frequency Domain Vibration Methods for Automotive Component Durability

1996-02-01
960971
A simple CAE method of predicting the performance of a component during sine testing has been developed and applied to the practical case of an automotive component. The slow frequency sweep rate during a test is represented as a sequence of steady state conditions. Direct frequency response analysis at the limited number of frequencies is conducted and results used as a basis for prediction of fatigue damage using the Palmgren-Miner rule. The total damage during the test is calculated by linear summation of the damage during each frequency interval. This technique is completely general and can be applied even if there are multiple inputs to the component. A simple extension enables application to engine testing and other cases where excitation may be expressed as a Fourier series expansion of periodic excitations.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

1995-11-01
952658
One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Molecular Analysis of Sulfate Species in Environmental Aerosols Using Chemical Ionization Mass Spectrometry

1977-02-01
770063
Speciation of sulfurous acid, sulfuric acid and ammonium sulfate collected from the aerosol phase on a Fluoropore filter has been readily accomplished using techniques of chemical ionization mass spectrometry combined with thermal separation. Thermal separation of ammonium hydrogen sulfate from ammonium sulfate was not possible. Spectral separation of these species by selective ionization is proposed. Analysis of sulfate aerosols collected from ambient air and catalyzed vehicle emissions is described. It was found that sulfuric acid aerosol was rapidly converted to ammonium sulfate or ammonium hydrogen sulfate in the presence of ambient concentrations of ammonia. Ambient samples collected in the Detroit metropolitan area have been found to contain only trace quantities of sulfuric aicd. Sulfate samples collected from a dilution tube into which catalyzed vehicle exhaust was injected were found to contain significant quantities of ammonium sulfate in addition to sulfuric acid.
Technical Paper

The Measurement of Underhood and Underbody Velocities with the H-Meter

1999-03-01
1999-01-0234
Optimizing heat protection for underbody and underhood components, using non-CFD heat transfer CAE tools, requires the estimation of local convective heat transfer coefficients. This estimate, in turn requires knowledge of the local air velocity. Currently available methods for obtaining this velocity at several vehicle locations have been impractical and expensive for use in over-the-road testing. This paper presents the design, fabrication, and field testing results of a 26 mm diameter spherical transducer which measures the local heat transfer coefficient directly. The transducer contains three thermocouples and a heater. It is calibrated to correlate the coefficient with the air velocity. Drawing less than 0.1 A, a number of them can be powered by the vehicle battery with negligible drain. The data acquisition consists of sampling three thermocouples per spherical transducer.
Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

1995-02-01
950801
Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
X