Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vehicle Sound Package - Art or Science?

1972-02-01
720508
Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Upfront Durability CAE Analysis for Automotive Sheet Metal Structures

1996-02-01
961053
Automotive product development requires higher degree of quality upfront engineering, faster CAE turn-around, and integration with other functional requirements. Prediction of potential durability concerns using analytical methods for sheet metal structures subjected to road loads and other customer uses has become very important. A process has been developed to provide design direction based upon peak loads, simultaneous peak loads, and vehicle program analytical or measured loads. It identifies critical loads at each input location and load sets for multiple input locations, filters load time histories, selects critical areas and analyzes for fatigue life. Several case studies have been completed. The results show that the variations are consistent with the accuracies in finite element analysis, road load data acquisition, and fatigue calculation methods.
Technical Paper

Tire Treadwear Experiment Using Taguchi Methods

1988-02-01
880580
An experiment has been conducted to study the effect of vehicle alignment, tire construction and operational conditions on tire treadwear. The Taguchi approach was used to compose the experimental design and to analyze the data. The treadwear testing was conducted on the indoor test machine; this test duplicates the treadwear pattern observed during road test. The responses of interest were total wear, irregular wear patterns, and diagonal wear. The study quantified the relative importance of different factors to treadwear and also the degree of wear irregularity.
Journal Article

Thermophysical Properties Measurement of Interior Car Materials vs. Temperature and Mechanical Compression

2014-04-01
2014-01-1024
Thermophysical properties of materials used in the design of automotive interiors are needed for computer simulation of climate conditions inside the vehicle. These properties are required for assessment of the vehicle occupants' thermal sensation as they come in contact with the vehicle interior components, such as steering wheels, arm rests, instruments panel and seats. This paper presents the results of an investigation into the thermophysical properties of materials which are required for solving the non-linear Fourier equations with any boundary conditions and taking into account materials' specific heat, volume density, thermal conductivity, and thermal optical properties (spectral and total emissivity and absorptivity). The model and results of the computer simulation will be published in a separate paper.
Technical Paper

The Use of Frequency Domain Vibration Methods for Automotive Component Durability

1996-02-01
960971
A simple CAE method of predicting the performance of a component during sine testing has been developed and applied to the practical case of an automotive component. The slow frequency sweep rate during a test is represented as a sequence of steady state conditions. Direct frequency response analysis at the limited number of frequencies is conducted and results used as a basis for prediction of fatigue damage using the Palmgren-Miner rule. The total damage during the test is calculated by linear summation of the damage during each frequency interval. This technique is completely general and can be applied even if there are multiple inputs to the component. A simple extension enables application to engine testing and other cases where excitation may be expressed as a Fourier series expansion of periodic excitations.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Influence of Heat Treat Process and Alloy on the Surface Microstructure and Fatigue Strength of Carburized Alloy Steel

1999-03-01
1999-01-0600
Gas carburized and quenched low alloy steels typically produce surface microstructures which contain martensite, retained austenite and often NMTP's (non-martensitic transformation products). The NMTP's are caused by a reduction of surface hardenability in the carburizing process from loss of alloying elements to oxidation. Gas carburized low alloy steels such as SAE 8620 with NMTP's on the surface have been shown to have inferior bending fatigue properties when compared to more highly alloyed steels which do not form NMTP's, such as SAE 4615M. One method of minimizing the formation of oxides and eliminating NMTP formation during carburizing and quenching is to use plasma carburizing instead of conventional gas carburizing. In this study the microstructures and bending fatigue performance of plasma carburized SAE 8620 and SAE 4615M is compared to the same alloys conventionally gas carburized and quenched.
Technical Paper

The Influence of Calcium Treatment on the Mechanical Properties of Plain Carbon (SAE 1050) Steel

1994-03-01
940253
The influence of calcium treatment on the mechanical properties of a plain carbon steel (SAE 1050) was investigated. The mechanical properties investigated were tensile and impact strength, fatigue crack growth rate, and the fatigue threshold. Impact testing was conducted at both room temperature and at -40°C. Several heats of both calcium and non-calcium treated steel (SAE 1050) were tested in both the as hot-rolled condition and in the quenched and tempered condition (with a hardness level of HRC = 45). The results of this investigation show no significant difference in the tensile properties or room temperature impact properties between the calcium treated and the non-calcium treated steels. However, the impact strengths of calcium treated steels were slightly higher than that of non-calcium treated steels at -40°C.
Technical Paper

The Fourier Transform Applied to Vehicle Exterior Noise Source Identification

1976-02-01
760151
This paper discusses a motor vehicle noise source identification technique designed for use during the SAE J986a or similar drive-by test procedure. It provides, by application of the Fourier Transform, the capability to obtain a narrowband (9.8 Hz) frequency resolution over an extended frequency range (0-10,000 Hz) at the peak vehicle noise level, a particular RPM, or a particular vehicle location in the test zone. Other features include corrections for the Doppler shift, averaging of noise tests, and subtraction of spectra of two separate noise tests from a component disconnect/reconnect procedure. The above analysis, in conjunction with the noise source isolation resulting directly from the disconnect procedure, identifies the major vehicle noise contributors in terms of their respective amplitudes and frequencies.
Technical Paper

The Ford GT Transaxle - Tailor Made in 2 Years

2004-03-08
2004-01-1260
This paper describes the rapid development of the Ford GT transmission, from concept phase to production, where the technical challenges involved are implicit in the specifications provided. It presents the steps taken at a project management level to expedite development, as well as the tools used to design and rate components at the design stage. Examples of concurrent engineering are given as well as management techniques used to predict and address key risks. In addition, details of analysis and test procedures are given, underlining their contribution to the rapid introduction of the transmission to the market place.
Technical Paper

The Ford Aluminum Beaker Test: A New Tool for the Study of ATF Oxidation

1967-02-01
670023
A small-scale oxidation test for automatic transmission fluids has been developed. In the test air flow rates, temperature and catalytic activity can be closely controlled at desired levels. A test procedure for screening automatic transmission fluids is described. Data are presented illustrating the ability of the test to distinguish between different levels of oxidation resistance, the repeatability of the test, and the correlation achieved thus far with a presently used full-scale transmission oxidation test.
Technical Paper

The First Standard Automotive Crash Dummy

1969-02-01
690218
The SAE Recommended Practice J963 “Anthropomorphic Test Device for Dynamic Testing” describes a standard 50th percentile adult male anthropomorphic test dummy. For nearly three years the Crash Test Dummy Task Force worked with the limited data available in selecting values for the body dimensions and ranges of motion. The data for specifying the values of mass distribution were developed experimentally as was a test procedure for determining the dynamic spring rate of the thorax.
Technical Paper

The Fatigue Life Prediction Method for Multi-Spot-Welded Structures

1993-03-01
930571
The fatigue strength of spot welds in a multi-spot-welded structure is one of the key issues of concern for achieving structural durability and optimum design in automobile industry. In this study, a global-local fatigue life prediction method is proposed to predict the fatigue life of spot welds in multi-spot-welded structures. In this method, the remote stress-strain field away from the spot-welds, calculated from a global coarse finite element model, is assumed to be acceptable, and is used to recover the stress-strain information of the spot-welds. To improve the accuracy of the remote stress-strain field, an “equivalent” spot weld element is also proposed. The method makes it feasible to predict the fatigue life of spot welds without constructing a detailed finite element model for each spot weld. The method will help reduce finite element model size and save time.
Technical Paper

The Effect of Stress Absorbing Layers on the Wear Behavior of Painted Plastic Substrates

1995-02-01
950801
Erosion damage to automotive car bodies caused by stones and small sand particles and road debris significantly affects the appearance of paint. Painted engineering plastics as well as precoated sheet steel are affected by erosion phenomenon. Erosion of painted plastic substrates results in cosmetic concerns while that on metal substrates results in cosmetic to perforation corrosion. This work describes a laboratory simulation of erosion of painted plastic substrates by small particles on various paint and substrate types. Gloss loss was used to quantitatively evaluate erosion of painted surfaces. Wear behavior of painted plastic substrates to slag sand impact was evaluated as a function of several variables including paint type (one-component melamine crosslinked (1K) vs. two-component isocyanate crosslinked (2K)), thermal history, and coating modulus. The effect of slag sand type (particle size and chemical composition) was studied.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Build-Up of Oil Dilution by Gasoline and the Influence of Vehicle Usage Pattern

2000-10-16
2000-01-2838
The dilution of lubricating oil by fuel has adverse effects on engine wear, oil lubricity, air/fuel ratio control and feedgas emissions. Dilution is one of the factors limiting oil change intervals. The level and rate of accumulation depend on engine operating conditions and patterns of vehicle use. The work reported here develops and evaluates an empirical model to predict accumulation characteristics. This is aligned to requirements for predictions of dilution build-up in service. Predictions are shown to be in good agreement with data given in the literature. The model is used to investigate the influence of patterns of vehicle use on dilution.
X