Refine Your Search

Topic

Search Results

Technical Paper

The Use of Small Engines as Surrogates for Research in Aftertreatment, Combustion, and Fuels

2006-11-13
2006-32-0035
In this research, small, single cylinder engines have been used to simulate larger engines in the areas of aftertreatment, combustion, and fuel formulation effects. The use of small engines reduces overall research cost and allows more rapid experiments to be run. Because component costs are lower, it is also possible to investigate more variations and to sacrifice components for materials characterization and for subsequent experiments. Using small engines in this way is very successful in some cases. In other cases, limitations of the engines influence the results and need to be accounted for in the experimental design and data analysis. Some of the results achieved or limitations found may be of interest to the small engine market, and this paper is offered as a summary of the authors' research in these areas. Research is being conducted in two areas. First, small engines are being used to study the rapid aging and poisoning of exhaust aftertreatment catalysts.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

2007-04-16
2007-01-0224
On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

2009-04-20
2009-01-0628
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

2007-10-29
2007-01-4076
The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 90. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant Φ conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling the HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Journal Article

Removal of EGR Cooler Deposit Material by Flow-Induced Shear

2013-04-08
2013-01-1292
A number of studies have identified a tendency for exhaust gas recirculation (EGR) coolers to foul to a steady-state level and subsequently not degrade further. One possible explanation for this behavior is that the shear force imposed by the gas velocity increases as the deposit thickens. If the shear force reaches a critical level, it achieves a removal of the deposit material that can balance the rate of deposition of new material, creating a stabilized condition. This study reports efforts to observe removal of deposit material in-situ during fouling studies as well as an ex-situ removal through the use of controlled air flows. The critical gas velocity and shear stress necessary to cause removal of deposit material is identified and reported. In-situ observations failed to show convincing evidence of a removal of deposit material. The results show that removal of deposit material requires a relatively high velocity of 40 m/s or higher to cause removal.
Technical Paper

Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts

2005-04-11
2005-01-1758
Phosphorous in diesel exhaust is derived via engine oil consumption from the zinc dialkyldithiophosphate (ZDDP) oil additive used for engine wear control. Phosphorous present in the engine exhaust can react with an exhaust catalyst and cause loss of performance through masking or chemical reaction. The primary effect is loss of light-off or low temperature performance. Although the amount of ZDDP used in lube oil is being reduced, it appears that there may is a minimum level of ZDDP needed for engine durability. One of the ways of reducing the effects of the resulting phosphorous on catalysts might be to alter the chemical state of the phosphorous to a less damaging form or to develop catalysts which are more resistant to phosphorous poisoning. In this study, lube oil containing ZDDP was added at an accelerated rate through a variety of engine pathways to simulate various types of engine wear or oil disposal practices.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

Performance of Biodiesel Blends of Different FAME Distributions in HCCI Combustion

2009-04-20
2009-01-1342
As the world market develops for biodiesel fuels, it is likely that a wider variety of biodiesels will become available, both locally and globally, and require engines to operate on a wider variety of fuels than experienced today. At the same time, tighter emissions regulations and a drive for improved fuel economy have focused interest on advanced combustion modes such as HCCI or PCCI, which are known to be more sensitive to fuel properties. This research covers two series of biodiesel fuels. In the first, B20 blends of natural methyl esters derived from palm, coconut, rape, soy, and mustard were evaluated at light load in an HCCI research engine to determine combustion and performance characteristics. These fuels showed performance differences between the biodiesels and the base #2 ULSD fuel, but did not allow separation of chemical effects due to the small number of fuels and correlation of various properties.
Technical Paper

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

2009-11-02
2009-01-2645
The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC).
Technical Paper

Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

2014-04-01
2014-01-1596
Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel.
Technical Paper

On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion

2006-04-03
2006-01-0418
We report experimental observations of cyclic combustion variability during the transition between propagating flame combustion and homogeneous charge compression ignition (HCCI) in a single-cylinder, stoichiometrically fueled, spark-assisted gasoline engine. The level of internal EGR was controlled with variable valve actuation (VVA), and HCCI combustion was achieved at high levels of internal EGR using the VVA system. Spark-ignition was used for conventional combustion and was optionally available during HCCI. The transition region between purely propagating combustion and HCCI was mapped at multiple engine speeds and loads by incrementally adjusting the internal EGR level and capturing data for 2800 sequential cycles. These measurements revealed a complex sequence of high COV, cyclic combustion variations when operating between the propagating flame and HCCI limits.
Technical Paper

Microstructural Analysis of Deposits on Heavy-Duty EGR Coolers

2013-04-08
2013-01-1288
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards and has negative impacts on cooler sizing and engine performance. In order to improve our knowledge of cooler fouling as a function of engine operating parameters and to predict and enhance performance, 19 tube-in-shell EGR coolers were fouled using a 5-factor, 3-level design of experiments with the following variables: (1) EGR flow rate, (2) EGR inlet gas temperature, (3) coolant temperature, (4) soot level, and (5) hydrocarbon concentration. A 9-liter engine and ULSD fuel were used to form the cooler deposits. Coolers were run until the effectiveness stabilized, and then were cooled down to room temperature and run for an additional few hours in order to measure the change in effectiveness due to shut down. The coolers were cut open and the mass per unit area of the deposit was measured as a function of distance down the tube.
Technical Paper

Hydrocarbon Selective Catalytic Reduction Using a Silver-Alumina Catalyst with Light Alcohols and Other Reductants

2005-04-11
2005-01-1082
Previously reported work with a full-scale ethanol-SCR system featuring a Ag-Al2O3 catalyst demonstrated that this particular system has potential to reduce NOx emissions 80-90% for engine operating conditions that allow catalyst temperatures above 340°C. A concept explored was utilization of a fuel-borne reductant, in this case ethanol “stripped” from an ethanol-diesel micro-emulsion fuel. Increased tailpipe-out emissions of hydrocarbons, acetaldehyde and ammonia were measured, but very little N2O was detected. In the current increment of work, a number of light alcohols and other hydrocarbons were used in experiments to map their performance with the same Ag-Al2O3 catalyst. These exploratory tests are aimed at identification of compounds or organic functional groups that could be candidates for fuel-borne reductants in a compression ignition fuel, or could be produced by some workable method of fuel reforming.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

Experimental and Statistical Comparison of Engine Response as a Function of Fuel Chemistry and Properties in CI and HCCI Engines

2012-04-16
2012-01-0857
Knowledge of how fuel chemistry and properties affect engine response is necessary for effective engine control. It may also be possible to tailor fuels to specific combustion modes, engine geometries, or for desired outputs to generate lower emissions and/or higher IMEP and efficiency. Fuel chemistry and properties have different effects on engine performance in CI and HCCI combustion. In this study, experiments were performed using a 517cc Hatz single-cylinder diesel engine and the same engine converted to run in HCCI mode, both equipped with advanced combustion analysis equipment. Engine performance results were modeled statistically with respect to fuel properties, operating parameters, and engine type to determine the extent to which fuel characteristics influence engine response, and how the response differs between the two combustion modes. Experiments were performed using 16 fuels: ULSD, 9 FACE diesel fuels, and 6 P20 blends of unprocessed plant oils.
Technical Paper

Emission Performance of Selected Biodiesel Fuels

2003-05-19
2003-01-1866
Because of the great interest in biodiesel fuels around the world, the International Energy Agency's Committee on Advanced Motor Fuels sponsored this project to determine emissions and performance of a number of biodiesel fuels with a special emphasis on unregulated emissions. Oak Ridge National Laboratory (ORNL) and Technical Research Centre in Finland (VTT) carried out the project with complementary work plans. Several different engines were used between the two sites, and in some cases emissions control catalysts were used, both at ORNL and at VTT. ORNL concentrated on light and medium duty engines, while VTT emphasized a heavy-duty engine and also used a light duty car as a test bed. Common fuels between the two sites for these tests were rape methyl ester in 30% blend and neat, soy methyl ester in 30% blend and neat, used vegetable oil methyl ester (UVOME) in 30% blend, and the Swedish environmental class 1 reformulated diesel (RFD).
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

2017-03-28
2017-01-1000
Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
X