Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Windshield Wiper Linkage Analysis

1971-02-01
710254
The Kinematic Analysis Methods Computer Program that has been used by Ford Motor Co. to evaluate mechanisms for the past four years has been modified to generate performance curves for windshield wiper linkages directly using a Calcomp Plotter. Problems such as stalling, “jerky” operation, and excessive phase lag between wipers can be detected early in the design stages by careful evaluation of the curves.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

What Is Acid Rain and How Does It Affect Our Environment?

1982-02-01
820290
Acid rain in the U.S. is becoming a major environmental issue. This paper reviews the known information regarding pollution sources, impact on the environment and the role of the automobile in acid rain. Although natural sources of sulfur and nitrogen pollutants are equal to or greater than man-made sources on a global scale, many scientists believe man's activities are the major cause of high levels of acidity. Attempts to relate specific sources of SO2 to specific acid rain events in the northeastern U. S. have been unsuccessful. The roles of tall stacks, long range transport and dry vs. wet deposition are incompletely understood. Temporal and geographic trends in acidity are not well defined except for increased acidity in the southeast. About 30% of the acidity in rain in the northeast is due to HNO3. In the process of utilizing nitrates as a nutrient, plants partly neutralize the affect of HNO3 in the rain.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Vehicle Response to Throttle Tip-In/Tip-Out

1985-05-15
850967
Throttle tip-in/tip-out maneuvers generate a driveline torque transient which may produce an objectionable disturbance to vehicle occupants. Recent developments in vehicle design have contributed to increased severity in this response, which is known as clunk and shuffle. This paper describes experimental procedures which have been developed to quantify response levels and diagnose cases of concern. These techniques are useful for developing engine control systems which require transient strategies that differ greatly from those required for steady state operation. In addition, specific design and calibration modifications, which control clunk and shuffle, are described.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Variables Influencing Shoulder Belt Positioning of Four Point Safety Belts

2001-03-05
2001-01-0382
The purpose of this study was to determine the optimal location of the shoulder belts for a suspender style four-point safety belt system. This optimal location must satisfy two conditions. First, the shoulder belts must properly fit over the occupant’s shoulders for safety performance. Second, the shoulder belts location on the occupant’s body must be acceptable to the occupant. To determine the optimal acceptable location of the shoulder belts, forty-four subjects were recruited by height and tested in a reconfigurable test seat. The results showed that avoiding an interaction between the shoulder belts and the occupant’s neck improved the acceptability of the system. Variables that affected this interaction included the horizontal and vertical position of the shoulder belts and the occupant’s weight, clothing, and gender.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Variability in Hydrocarbon Speciation Measurements at Low Emission (ULEV) Levels

1995-02-01
950781
As vehicle tailpipe emission levels decrease with improvements in emission control technology and reformulation of gasolines, exhaust hydrocarbon levels begin to approach the levels in ambient air. Hydrocarbon speciation at these low levels requires high sensitivity capillary gas chromatography methods. In this study, a mixture of “synthetic” exhaust was prepared at two concentration levels (approximately 5 ppm C and 10 ppm C), and was analyzed by the widely-used Auto/Oil Air Quality Improvement Research Program (AQIRP) Phase II (gas chromatography) speciation method with a sensitivity of 0.005 ppm C for individual species. The mixture at each concentration level, along with a sample of ambient air, was analyzed a total of 20 times on 10 separate days over a 2½ week period. Concentrations of total hydrocarbons (HCs) and individual species (using the AQIRP library) were measured; averages and standard deviations were calculated.
Technical Paper

Vapor and Liquid Composition Differences Resulting from Fuel Evaporation

1999-03-01
1999-01-0377
Liquid fuels and the fuel vapors in equilibrium with them typically differ in composition. These differences impact automotive fuel systems in several ways. Large compositional differences between liquid and vapor phases affect the composition of species taken up within the evaporative emission control canister, since the canister typically operates far from saturation and doesn't reach equilibrium with the fuel tank. Here we discuss how these differences may be used to diagnose the mode of emission from a sealed container, e.g., a fuel tank. Liquid or vapor leaks lead to particular compositions (reported here) that depend on the fuel components but are independent of the container material. Permeation leads to emissions whose composition depends on the container material. If information on the relative permeation rates of the different fuel components is available, the results given here provide a tool to decide whether leakage or permeation is the dominant mode of emission.
Technical Paper

Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions

1997-05-01
971650
A simple set of equations has been developed to characterize automotive fuel behavior in fuel tanks, fuel vapor systems and fuel rails, particularly under hot weather conditions. The system of equations links the vapor pressure P, the temperature T, and the mass fraction evaporated Z. Parameters are determined empirically from laboratory vapor pressure and distillation tests. With appropriate values for heat capacity, heat of vaporization, and vapor composition, the equations can be used to estimate upper flammability limits, fuel weathering under hot fuel handling conditions, pressure rise in tanks, and evaporative vapor generation. The equations were developed as part of a larger fuel vapor system model.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

1999-03-01
1999-01-1270
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
Technical Paper

V/L Effect on Vapor Pressure Measurement of Full Boiling Range Fuels Using the Two-Part Injection Method

1993-03-01
930378
The internally programmed two-injection method for determining the dissolved air correction in the CCA-VP laboratory vapor pressure instrument (Grabner Instruments), while adequate for pure, single component liquids, can be in error for full boiling range automotive fuels. For these fuels, errors of up to 10 kPa (1.5 psi) in vapor pressure at 38°C (100°F) can occur due to the increase in vapor pressure between the first and second injection caused by decreasing vapor liquid ratio (V/L); this increase is interpreted by the instrument as additional dissolved air and results in overcorrection for this effect. A method is demonstrated for removing the V/L effect using two TV/L values for the subject fuel, either calculated or measured independently. The true air correction determined in this way is similar to values obtained for single component fuels and to values calculated directly from air solubility data.
Technical Paper

Using OCTO SOI nMOSFET to Handle High Current for Automotive Modules

2012-10-02
2012-36-0211
This paper presents an experimental comparative study between the OCTOGONAL-Gate Silicon-on-Insulator (SOI) nMOSFET (OSM) and the conventional SOI nMOSFET (CSM) considering the same bias conditions and the same gate area (AG), in order to verify the influence of this new MOSFET layout style to handle high current for automotive modules. Analog integrated circuits (ICs) design tends to be considered an art due to a large number of variables and objectives to achieve the product specifications. The designer has to find the right tradeoffs to achieve the desired automotive specification such as low power, low voltage, high speed and high current driver. SOI MOSFET's technology is required to provide the growth of embedded electronics. This growth is driving demand for power-handling devices that are smaller yet still provide high current driver capabilities.
Technical Paper

Use of a Novel Non-Phosphorus Antiwear Additive for Engine Oils

1987-11-01
872080
A novel non-phosphorus antiwear additive, NP-1, was evaluated as a partial substitute for zinc dialkyldithiophosphate (ZDTP). ZDTP, an antiwear/antioxidant engine oil additive may under certain conditions cause three way catalyst (TWC) deactivation due to formation of an amorphous zinc pyrophosphate, Zn2P2O7, glaze. Antiwear and antioxidant properties of NP-1 alone and in combination with ZDTP were compared with ZDTP only containing formulations. The effects of NP-1 on TWC activity during pulsator modulation and steady-state conditions showed that the TWC maintained good overall activity during 24,000 simulated miles.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Un-Controlled Generation Modelling and Analysis for Hybrid Vehicles

2017-01-10
2017-26-0108
Interior permanent magnet machines are being widely used in hybrid vehicles owing to their compact size and high power density. Vehicle level application requires the motor to operate at high speed beyond the base speed of the motor. This is accomplished through flux weakening control. Nonfunctioning of inverter switches and/or gate driver circuit during flux weakening could give rise to a potential fault scenario called Un-Controlled Generation (UCG). This paper gives a detailed background of UCG and its impact on the high voltage and propulsion systems. In further sections the details related to modelling and analysis of UCG will be discussed. Finally, the paper will conclude with simulation results and comparison of the results with motor dynamometer test data.
X