Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

1999-03-01
1999-01-1270
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Using OCTO SOI nMOSFET to Handle High Current for Automotive Modules

2012-10-02
2012-36-0211
This paper presents an experimental comparative study between the OCTOGONAL-Gate Silicon-on-Insulator (SOI) nMOSFET (OSM) and the conventional SOI nMOSFET (CSM) considering the same bias conditions and the same gate area (AG), in order to verify the influence of this new MOSFET layout style to handle high current for automotive modules. Analog integrated circuits (ICs) design tends to be considered an art due to a large number of variables and objectives to achieve the product specifications. The designer has to find the right tradeoffs to achieve the desired automotive specification such as low power, low voltage, high speed and high current driver. SOI MOSFET's technology is required to provide the growth of embedded electronics. This growth is driving demand for power-handling devices that are smaller yet still provide high current driver capabilities.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

Unifying Value Methodology and Robust Design to Achieve Design for Six Sigma

2006-04-03
2006-01-0998
The concept of product or system function is considered as described in the Taguchi System of Quality Engineering. The importance of transfer functions is also discussed and a review of conventional value analysis techniques is given. This paper proposes a combination of the principles of robust design and value methodology to enable on-target functionality and direct cost allocation early in the product development process. The discussion on integration of value analysis principles in robust design methodology is provided considering the six sigma environment.
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

Truck Ride — A Mathematical and Empirical Study

1969-02-01
690099
“Truck Ride” in this study refers to some vehicle ride parameters involved in tractor-trailer combinations. For the study, a mathematical model of a tractor-trailer vehicle as a vibrating system was developed. Principles of vibration theory were applied to the model while a digital computer was employed to investigate the complex system. To parallel the analytical investigation of the tractor-trailer vehicle, vehicle studies were conducted using a magnetic tape recorder and associated instrumentation installed in the tractor. Parameters studied included coupler position on the tractor, laden weight of trailer, spring rates of the different axles of the combination, damping capacity associated with each spring rate, vehicle speed, and “tar strip” spacing of the highway and cab mountings. The mathematical results were used as a basis for empirical study. A comparison of calculated and empirical data are reported.
Technical Paper

Trajectory-Tracking Control for Autonomous Driving Considering Its Stability with ESP

2018-08-07
2018-01-1639
With rapid increase of vehicles on the road, safety concerns have become increasingly prominent. Since the leading cause of many traffic accidents is known to be by human drivers, developing autonomous vehicles is considered to be an effective approach to solve the problems above. Although trajectory tracking plays one of the most important roles on autonomous driving, handling the coupling between trajectory-tracking control and ESP under certain driving scenarios remains to be challenging. This paper focuses on trajectory-tracking control considering the role of ESP. A vehicle model is developed with two degrees of freedom, including vehicle lateral, and yaw motions. Based on the proposed model, the vehicle trajectory is separated into both longitudinal and lateral motion. The coupling effect of the vehicle and ESP is analyzed in the paper. The lateral trajectory-tracking algorithm is developed based on the preview follower theory.
Technical Paper

Training Materials for Agricultural Safety and Health

1975-02-01
750785
AN INTERDISCIPLINARY TEAM from Purdue University is developing a comprehensive set of educational materials for agricultural safety and health for OSHA, of the U. S. Department of Labor. The team from the Purdue school of Agriculture, school of Veterinary Medicine, and the school of Humanities, Social Science and Education are working for a year and a half to gather and catalog all existing safety materials, and to produce new ones to meet nationwide needs. The project was begun on July 1, 1974 and is scheduled to be completed by December 31, 1975. The project team includes John B. Liljedahl, professor of agricultural engineering, project leader; Avery H. Gray, assistant department head, 4-H and Youth; William H. Hamilton, agricultural education; David H. Loewer, Extension agricultural engineer; David L. Matthew, Extension Entomologist; Vernon B. Mayrose, Extension animal scientist; Ken Weinland, Extension veterinarian; Bruce A. McKenzie, Extension agricultural engineer; James L.
Technical Paper

Time Determinism and Semantics Preservation in the Implementation of Distributed Functions over FlexRay

2010-04-12
2010-01-0452
Future automobiles are required to support an increasing number of complex, distributed functions such as active safety and X-by-wire. Because of safety concerns and the need to deliver correct designs in a short time, system properties should be verified in advance on function models, by simulation or model checking. To ensure that the properties still hold for the final deployed system, the implementation of the models into tasks and communication messages should preserve properties of the model, or in general, its semantics. FlexRay offers the possibility of deterministic communication and can be used to define distributed implementations that are provably equivalent to synchronous reactive models like those created from Simulink. However, the low level communication layers and the FlexRay schedule must be carefully designed to ensure the preservation of communication flows and functional outputs.
Technical Paper

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates

2015-04-14
2015-01-1369
This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Status of Error Management and Human Factors in Regional Airlines

1999-04-20
1999-01-1594
This paper explores the current status of error management strategies and human factors efforts within regional airlines. It briefly addresses the potential needs of the environment from a perspective of the market’s accident and incident history as well as anecdotal reports received from members of the regional airline community. It also raises questions concerning the applicability of human factors and error management strategies developed in other segments of aviation to the problems faced within regional airline environments.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Importance of Analysis of Electrical Parameters for Design of Analog Circuits in Automotive Modules

2012-10-02
2012-36-0209
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Effects of Cage Flexibility on Ball-to-Cage Pocket Contact Forces and Cage Instability in Deep Groove Ball Bearings

2006-04-03
2006-01-0358
Rolling element bearings provide near frictionless relative motion between two rotating parts. Automotive transmissions use various ball and rolling element bearings to accommodate the relative motion between rotating elements. In order to understand changes in bearing performance due to the loads imposed through the transmission, advanced modeling of the bearing is required. This paper focuses on the effects of cage flexibility on bearing performance. A flexible cage model was developed and incorporated into a six degree-of-freedom dynamic, deep groove ball bearing model. A lumped mass approach was used to represent the cage flexibility and was validated through an ANSYS forced response analyses of the cage. Results from the newly developed Flexible Cage Model (FCM) and an identical numerical model employing a rigid bearing cage were compared to determine the effects of varying ball-to-cage pocket clearance and cage stiffness on cage motion and ball-to-cage pocket contact forces.
Journal Article

The Development of Terrain Pre-filtering Technique Based on Constraint Mode Tire Model

2015-09-01
2015-01-9113
The vertical force generated from terrain-tire interaction has long been of interest for vehicle dynamic simulations and chassis development. To improve simulation efficiency while still providing reliable load prediction, a terrain pre-filtering technique using a constraint mode tire model is developed. The wheel is assumed to convey one quarter of the vehicle load constantly. At each location along the tire's path, the wheel center height is adjusted until the spindle load reaches the pre-designated load. The resultant vertical trajectory of the wheel center can be used as an equivalent terrain profile input to a simplified tire model. During iterative simulations, the filtered terrain profile, coupled with a simple point follower tire model is used to predict the spindle force. The same vehicle dynamic simulation system coupled with constraint mode tire model is built to generate reference forces.
X