Refine Your Search

Topic

Author

Search Results

Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Technical Paper

Solar Heat Load on the Vehicle Occupants

2016-04-05
2016-01-0246
Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Self-deposited E-coating for Mg Alloys

2010-04-12
2010-01-0727
Magnesium alloys are not corrosion resistant in many applications and they require coating protection. In this study, we developed an electroless E-coating technique for magnesium alloys and discussed a cathodic E-coating deposition mechanism for the electroless E-coating process. This coating can be formed within a few seconds by dipping a magnesium alloy (i.e., AZ91D) in an E-coat bath without applying a current or voltage. The deposited electroless coat can offer good protection to the AZ91D magnesium alloy in 5 wt% NaCl corrosive solution as well as in a phosphating bath. The most interesting finding is that the electroless coating is not sensitive to local damage. No preferential corrosion attack occurred along the scratches made on the coating.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Review of 2013 U.S. Retail Biodiesel Blends Quality Survey

2014-04-01
2014-01-1379
Biodiesel is a domestic, renewable fuel for diesel engines and is made from agricultural co-products such as soybean oil, rapeseed oil, palm oil and other natural oils. Biodiesel is a cleaner burning fuel that is biodegradable and non-toxic compared to petroleum diesel. Biodiesel has become a major alternative fuel for automotive applications and is critical for lowering US dependence on foreign oil and attain energy security. Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467 specifications. Field warranty and validation tests have shown significant concerns with use of poor quality biodiesel fuels including fuel system deposits, engine oil deterioration, and efficiency loss of the after treatment system. Maintaining good quality of biodiesel is critical for success as a commercial fuel.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Technical Paper

Relationship Between Driver Eyes-Off-Road Interval and Hazard Detection Performance Under Automated Driving

2016-04-05
2016-01-1424
Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
Technical Paper

Rapid Residual Stress and Distortion Prediction in Cast Aluminum Components Using Artificial Neural Network and Part Geometry Characteristics

2014-04-01
2014-01-0755
Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Technical Paper

Passive Pedestrian Protection Approach for Vehicle Hoods

2014-04-01
2014-01-0513
Global regulations intended to enhance pedestrian protection in a vehicle collision, thereby reducing the severity of pedestrian injuries, are presenting significant challenges to vehicle designers. Vehicle hoods, for example, must absorb a significant amount of energy over a small area while precluding impact with a hard engine compartment component. In this paper, a simple passive approach for pedestrian protection is introduced in which thin metal alloy sheets are bent to follow a C-shaped cross-sectional profile thereby giving them energy absorbing capacity during impact when affixed to the underside of a hood. Materials considered were aluminum (6111-T4, 5182-O) and magnesium (AZ31-O, AZ61-O, ZEK100) alloys. To evaluate the material effect on the head injury criterion (HIC) score without a hood, each C-channel absorber was crushed in a drop tower test using a small dart.
Technical Paper

Model-Based Exhaust Pressure Control with Dynamic Feedforward for Engine Protection

2014-04-01
2014-01-1163
The need to reduce fuel consumption and harmful pollutants from engines is an important task for automotive industry. It has led to technological advances in new engine design, such as engine downsizing. Due to the reduction of displacement, engine power output is reduced and thus its overall performance is limited. In order to increase torque and power, engines are typically boosted by turbochargers or superchargers. Meanwhile, the improvement on turbo design makes it possible to operate VGT (variable geometry turbocharger) at harsher exhaust environment for gasoline engines as well (e.g., with much higher exhaust temperature than that of diesel engines). This makes VGT related control problems more challenging and requires attention to protecting corresponding engine hardware during an entire engine life.
Technical Paper

Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf

2010-04-12
2010-01-1210
This paper will examine the various design and performance criteria for optimized internal heat exchanger performance as applied to R134a and HFO-1234yf systems. Factors that will be considered include pressure drop, heat transfer, length, internal surface area, the effect of oil in circulation, and how these factors impact the effectiveness of the heat exchanger. The paper describes the test facility used and test procedures applied. Furthermore, some design parameters for the internal heat exchanger will be recommended for application to each refrigerant.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Impact of Texture on r-value and its Measurement in Magnesium Alloy Sheets

2014-04-01
2014-01-1014
The impact of texture on r-value and its measurement in magnesium alloy sheets has been studied using digital image correlation and electron backscatter diffraction techniques. Two magnesium alloy sheets with distinct textures were used in the present study, namely, AZ31 with a strong basal texture and ZE21 with a randomized texture. It is well known that a conventionally processed AZ31 magnesium sheet has strong basal texture, necessitating contraction and double twinning to accommodate thinning strain. The strain distribution on the sheet surface evolves nonlinearly with strain, impacting the measured r-value. In particular, the normal approach to measuring r-value based on average strains over the gauge section leads to the erroneous conclusion that r-value increases with deformation. When the r-value is measured locally at any point inside or outside the neck, the r-value is shown to have a constant value of 3 for all strain values.
Journal Article

General Motors Rear Wheel Drive Eight Speed Automatic Transmission

2014-04-01
2014-01-1721
General Motors shall introduce a new rear wheel drive eight speed automatic transmission, known as the 8L90, in the 2015 Chevrolet Corvette. The rated turbine torque capacity is 1000 Nm. This transmission replaces the venerable 6L80 six speed automatic. The objectives behind creation of this transmission are improved fuel economy, performance, and NVH. Packaging in the existing vehicle architecture and high mileage dependability are the givens. The architecture is required to offer low cost for a rear drive eight speed transmission while meeting the givens and objectives. An eight speed powerflow, invented by General Motors, was selected. This powerflow yields a 7.0 overall ratio spread, enabling improved launch capability because of a deeper first gear ratio and better fuel economy due to lower top gear N/V capability, relative to the 6L80. The eight speed ratios are generated using four simple planetary gearsets, two brake clutches, and three rotating clutches.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
X