Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Simulation to Quantify Sine with Dwell Maneuver Test Metric Variability

2008-04-14
2008-01-0590
The Sine with Dwell (SWD) maneuver is the basis for the NHTSA FMVSS-126 regulation. When put into effect, all vehicles under 10,000 lbs GVWR will need to pass this test. Understanding the variability in the yaw rate ratio and lateral displacement test metrics is important for vehicle design. Anything that influences vehicle handling can affect test metric variability. Vehicle handling performance depends largely on vertical tire patch loads, tire force and moment behavior, on slip angle, and camber angle. Tire patch loads are influenced, among other things, by weight distribution and (quasi-static and dynamic) roll-couple distribution. Tire force and moment relationships have a distinct shapes, but they all commonly rise to a peak value at a given slip angle value and then fall off with increasing slip angle. Severe handling maneuvers, like the SWD operate at slip angles that are at, or above, the peak lateral force.
Technical Paper

The Three Suspension Roll Centers and their Application to Vehicle Dynamics

2014-04-01
2014-01-0136
The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Self-deposited E-coating for Mg Alloys

2010-04-12
2010-01-0727
Magnesium alloys are not corrosion resistant in many applications and they require coating protection. In this study, we developed an electroless E-coating technique for magnesium alloys and discussed a cathodic E-coating deposition mechanism for the electroless E-coating process. This coating can be formed within a few seconds by dipping a magnesium alloy (i.e., AZ91D) in an E-coat bath without applying a current or voltage. The deposited electroless coat can offer good protection to the AZ91D magnesium alloy in 5 wt% NaCl corrosive solution as well as in a phosphating bath. The most interesting finding is that the electroless coating is not sensitive to local damage. No preferential corrosion attack occurred along the scratches made on the coating.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Review of 2013 U.S. Retail Biodiesel Blends Quality Survey

2014-04-01
2014-01-1379
Biodiesel is a domestic, renewable fuel for diesel engines and is made from agricultural co-products such as soybean oil, rapeseed oil, palm oil and other natural oils. Biodiesel is a cleaner burning fuel that is biodegradable and non-toxic compared to petroleum diesel. Biodiesel has become a major alternative fuel for automotive applications and is critical for lowering US dependence on foreign oil and attain energy security. Vehicle manufacturers have developed new vehicle and diesel engine technologies compatible with B6-B20 biodiesel blends meeting ASTM D7467 specifications. Field warranty and validation tests have shown significant concerns with use of poor quality biodiesel fuels including fuel system deposits, engine oil deterioration, and efficiency loss of the after treatment system. Maintaining good quality of biodiesel is critical for success as a commercial fuel.
Technical Paper

Rapid Residual Stress and Distortion Prediction in Cast Aluminum Components Using Artificial Neural Network and Part Geometry Characteristics

2014-04-01
2014-01-0755
Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Technical Paper

Power Capability Testing of a Lithium-ion Battery Using Hardware in the Loop

2010-04-12
2010-01-1073
The energy storage system (ESS) is the key enabler to hybrid electric vehicles (HEVs) that offer improved fuel economy and reduced vehicle emissions. The power capability of a battery has significant impact on the fuel economy of HEVs. This paper presents the power capability testing of a lithium-ion battery with a conventional metal oxide cathode using the hardware in the loop (HIL) at a wide range of charge/discharge conditions and at different temperatures. The achieved test results provide critical data of battery power characteristics and effectively accelerate the development of battery power prediction algorithm.
Technical Paper

Optimization of the Customer Experience for Routine Handling Performance

2015-04-14
2015-01-1588
Rapidly increasing customer, financial, and regulatory pressures are creating clear changes in the calculus of vehicle design for modern automotive OEM's (Original Equipment Manufacturers). Customers continue to demand shorter product lifecycles; the increasingly competitive global market exerts pressure to reduce costs in all stages of development; and environmental regulations drive a continuous need to reduce mass and energy consumption. OEM's must confront these challenges while continuing to satisfy the customer. The foundation to meeting these challenges includes: (1) Continued development of objective metrics to quantify performance; (2) Frontloading vehicle design content and performance synthesis; (3) A precise understanding of the customer and their performance preferences under diverse usage conditions. These combined elements will enable products better optimized amongst competing (and often contradictory) imperatives.
Technical Paper

Normally-Engaged Dual-Piston Clutch for Engine Stop-Start Application

2015-04-14
2015-01-1141
For the conventional 6 speed automatic transmission with engine stop-start powertrain, an electrically-driven auxiliary pump is implemented to maintain the transmission line pressure as required to lock-up the CB1234 clutch during engine auto-stop conditions. Upon releasing the brake pedal, the transmission engages into first gear with the objective to accelerate the vehicle in a responsive manner. In this study, a novel normally-engaged dual-piston clutch concept is designed to keep the CB1234 clutch locked-up during engine auto-stop conditions with the intention to eliminate the auxiliary pump without compromising vehicle performance. This dual piston clutch concept requires a relatively low line pressure to release the normally-engaged clutch when needed, thus, minimizing the hydraulic pumping work. To explore the functionality of this concept under a wide-open-throttle (WOT) auto-start transition, modeling and simulation of the normally-engaged dual-piston clutch is completed.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Model-Based Exhaust Pressure Control with Dynamic Feedforward for Engine Protection

2014-04-01
2014-01-1163
The need to reduce fuel consumption and harmful pollutants from engines is an important task for automotive industry. It has led to technological advances in new engine design, such as engine downsizing. Due to the reduction of displacement, engine power output is reduced and thus its overall performance is limited. In order to increase torque and power, engines are typically boosted by turbochargers or superchargers. Meanwhile, the improvement on turbo design makes it possible to operate VGT (variable geometry turbocharger) at harsher exhaust environment for gasoline engines as well (e.g., with much higher exhaust temperature than that of diesel engines). This makes VGT related control problems more challenging and requires attention to protecting corresponding engine hardware during an entire engine life.
Journal Article

Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach

2016-04-05
2016-01-0065
Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
Technical Paper

Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf

2010-04-12
2010-01-1210
This paper will examine the various design and performance criteria for optimized internal heat exchanger performance as applied to R134a and HFO-1234yf systems. Factors that will be considered include pressure drop, heat transfer, length, internal surface area, the effect of oil in circulation, and how these factors impact the effectiveness of the heat exchanger. The paper describes the test facility used and test procedures applied. Furthermore, some design parameters for the internal heat exchanger will be recommended for application to each refrigerant.
Journal Article

Internal Combustion Engine - Automatic Transmission Matching for Next Generation Power Transfer Technology Development in Automotive Applications

2016-04-05
2016-01-1099
Development of the next generation internal combustion engines and automatic transmissions for automotive applications is a mandatory powertrain engineering activity required now and in the coming years to meet forthcoming global emissions regulations. This paper details a preliminary investigation into possible synergies for fuel consumption reduction considering emerging automotive technologies integrated into the next generation combustion engine and automatic transmission architectures. A range of hypothetical gasoline engines were created and paired with a generalized set of step gear automatic transmissions designed to meet the performance requirements of high volume longitudinal full size truck application. These designs were then run through a design of experiments orthogonal array for prediction of fuel consumption on the WLTP test schedule and stand still acceleration to 100 kph.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Impact of Texture on r-value and its Measurement in Magnesium Alloy Sheets

2014-04-01
2014-01-1014
The impact of texture on r-value and its measurement in magnesium alloy sheets has been studied using digital image correlation and electron backscatter diffraction techniques. Two magnesium alloy sheets with distinct textures were used in the present study, namely, AZ31 with a strong basal texture and ZE21 with a randomized texture. It is well known that a conventionally processed AZ31 magnesium sheet has strong basal texture, necessitating contraction and double twinning to accommodate thinning strain. The strain distribution on the sheet surface evolves nonlinearly with strain, impacting the measured r-value. In particular, the normal approach to measuring r-value based on average strains over the gauge section leads to the erroneous conclusion that r-value increases with deformation. When the r-value is measured locally at any point inside or outside the neck, the r-value is shown to have a constant value of 3 for all strain values.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Technical Paper

Enhanced Acoustic Performance using Key Design Parameters of Headliners

2015-06-15
2015-01-2339
Sound absorption materials can be key elements for mass-efficient vehicle noise control. They are utilized at multiple locations in the interior and one of the most important areas is the roof. At this location, the acoustic treatment typically comprises a headliner and an air gap up to the body sheet metal. The acoustic performance requirement for such a vehicle subsystem is normally a sound absorption curve. Based on headliner geometry and construction, the sound absorption curve shape can be adjusted to increase absorption in certain frequency ranges. In this paper an overall acoustic metric is developed to relate design parameters to an absorption curve shape which results in improved in-vehicle performance. This metric is based on sound absorption coefficient and articulation index. Johnson-Champoux-Allard equivalent fluid model and diffuse field equations are used. The results are validated using impedance tube measurements.
X