Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Three Suspension Roll Centers and their Application to Vehicle Dynamics

2014-04-01
2014-01-0136
The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior.
Technical Paper

Tensile and Fatigue Behaviors of Two Thermoplastics Including Strain Rate, Temperature, and Mean Stress Effects

2014-04-01
2014-01-0901
An experimental investigation was conducted to evaluate tensile and fatigue behaviors of two thermoplastics, a neat impact polypropylene and a mineral and elastomer reinforced polyolefin. Tensile tests were performed at various strain rates at room, −40°C, and 85°C temperatures with specimens cut parallel and perpendicular to the mold flow direction. Tensile properties were determined from these tests and mathematical relations were developed to represent tensile properties as a function of strain rate and temperature. For fatigue behavior, the effects considered include mold flow direction, mean stress, and temperature. Tension-compression as well as tension-tension load-controlled fatigue tests were performed at room temperature, −40°C and 85°C. The effect of mean stress was modeled using the Walker mean stress model and a simple model with a mean stress sensitivity factor.
Technical Paper

Technological Comparison for Dual Phase and Advanced High Strength Low Alloy Steels Regarding Weldability and Mechanical Properties

2014-04-01
2014-01-0988
This paper presents a technological comparison of weldability and mechanical properties between a dual phase steel (DP) and an advanced high strength low alloy steel (AHSLA) used for automotive structural parts in order to demonstrate some unclear characteristics of each. Samples were spot welded and had their hardness and microstructure analyzed, also a shear test was applied on the weld button area. The edge stretchability was analyzed using hole expansion tests and tensile tests to determine the tensile and yield strength, anisotropic coefficients and total elongation. Data were used to estimate crash energy absorption. The results showed an AHSLA steel with higher than typical ductility. Finally, while DP showed improved stretchability, it was also concluded that such AHSLA could perform better bendability, drawability, flangeability and weldability.
Journal Article

Strain Field Measurement in the Vicinity of Ductile Rupture from Digital Image Correlation

2008-04-14
2008-01-0856
A methodology that enables two-dimensional strain field measurement in the vicinity of ductile rupture is described. Fully martensitic steel coupons were strained to fracture using a miniature tensile stage with custom data and image acquisition systems. Rupture initiated near the center of each coupon and progressed slowly toward the gage section edges. A state-of-the-art digital image correlation technique was used to compute the true strain field before rupture initiation and ahead of the resulting propagating macroscopic crack before final fracture occurred. True strains of the order of 95% were measured ahead of the crack at later stages of deformation.
Technical Paper

Minimum Cycle Requirement for SAE J2562

2014-04-01
2014-01-0073
SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Journal Article

Methods for Sizing Brake Pads for High Performance Brakes

2015-09-27
2015-01-2679
An aspect of high performance brake design that has remained strikingly empirical is that of determining the correct sizing of the brake pad - in terms of both area and volume - to match well with a high performance vehicle application. Too small of a pad risks issues with fade and wear life on the track, and too large has significant penalties in cost, mass, and packaging space of the caliper, along with difficulties in maintaining adequate caliper stiffness and its impact on pedal feel and response time. As most who have spent time around high performance brakes can attest to, there methods for determining minimum brake pad area, usually related in some form or another to the peak power the brake must absorb (functions of vehicle mass and top speed are common). However, the basis for these metrics are often lost (or closely guarded), and provide very little guidance for the effects of the final design (pad area) deviating from the recommended value.
Journal Article

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-09-28
2014-01-2495
An area of brake system design that has remained continually resistant to objective, computer model based predictive design and has instead continued to rely on empirical methods and prior history, is that of sizing the brake pads to insure satisfactory service life of the friction material. Despite advances in CAE tools and methods, the ever-intensifying pressures of shortened vehicle development cycles, and the loss of prototype vehicle properties, there is still considerable effort devoted to vehicle-level testing on public roads using “customer-based” driving cycles to validate brake pad service life. Furthermore, there does not appear to be a firm, objective means of designing the required pad volume into the calipers early on - there is still much reliance on prior experience.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Technical Paper

Integrated CAE Methods for Perceived Quality Assurance of Vehicle Outer Panels

2014-04-01
2014-01-0366
Oil canning and initial stiffness of the automotive roofs and panels are considered to be sensitive customer ‘perceived quality’ issues. In an effort to develop more accurate objective requirements, respective simulation methods are continuously being developed throughout automotive industries. This paper discusses a latest development on oil canning predictions using LS-DYNA® Implicit, including BNDOUT request, MORTAR contact option and with the stamping process involved, which resulted in excellent correlations especially when it comes to measurements at immediate locations to the feature lines of the vehicle outer panels. Furthermore, in pursuit of light-weighting vehicles with thinner roofs, a new CAE method was recently developed to simulate severe noise conditions exhibited on some of developmental properties while going through a car wash.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Journal Article

Fuel Octane and Volatility Effects on the Stochastic Pre-Ignition Behavior of a 2.0L Gasoline Turbocharged DI Engine

2014-04-01
2014-01-1226
Classic, hot-spot induced pre-ignition is a phenomenon that has been observed in gasoline spark ignited engines over the past 60-70 years. With the development of turbocharged, direct-injected (DI) gasoline engines, a new pre-ignition phenomenon occurring at low engine speeds and high loads has been encountered. Termed Stochastic Pre-ignition (SPI), it has become a significant issue to address in allowing for the full potential of gasoline turbo DI technology to improve powertrain efficiency. Many researchers are studying all aspects of the causes of Stochastic Pre-ignition, including causes by oil, fuel and engine hardware systems. The focus of this specific research was to study the relationship of fuel octane and volatility to Stochastic Pre-ignition behavior utilizing a GM 2.0L Gasoline Turbocharged DI engine (LHU).
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

Fatigue Behavior of Neat and Short Glass Fiber Reinforced Polymers under Two-Step Loadings and Periodic Overloads

2016-04-05
2016-01-0373
An experimental study was conducted to evaluate the variable amplitude fatigue behavior of a neat polymer (polypropylene impact co-polymer) and a polymer composite made of polybutylene terephthalate (PBT) with 30 wt% short glass fibers. Fatigue tests were conducted on un-notched and notched specimens at room temperatures. Plate-type specimens were prepared in the transverse direction with respect to the injection mold flow direction and a circular hole was drilled in the center of notched specimens. Two-step loadings (high-low and low-high) tests at two damage ratio of 0.2 and 0.5 at stress ratios of R = 0.1 and -1 were conducted to investigate load sequence effects and prediction accuracy of the linear damage rule. Different behaviors were observed for unreinforced and short glass fiber reinforced polymers under the two-step loading tests.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Technical Paper

Development of the ASTM Sequence IIIE Engine Oil Oxidation and Wear Test

1988-10-01
881576
The ASTM Sequence IIID engine-dynamometer test has been used to evaluate the high-temperature protection provided by engine oils with respect to valve train wear, viscosity increase (oil thickening), deposits, and oil consumption. The obsolescence of the engine used in this test along with the need to define even higher levels of performance associated with a new oil category (SG) prompted efforts at developing a replacement test. This paper describes the hardware and procedure development of this replacement test, the ASTM Sequence IIIE test. Test precision and correlation with field and Sequence IIID results on a series of reference oils is also discussed.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
X