Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Using Simulation to Quantify Sine with Dwell Maneuver Test Metric Variability

2008-04-14
2008-01-0590
The Sine with Dwell (SWD) maneuver is the basis for the NHTSA FMVSS-126 regulation. When put into effect, all vehicles under 10,000 lbs GVWR will need to pass this test. Understanding the variability in the yaw rate ratio and lateral displacement test metrics is important for vehicle design. Anything that influences vehicle handling can affect test metric variability. Vehicle handling performance depends largely on vertical tire patch loads, tire force and moment behavior, on slip angle, and camber angle. Tire patch loads are influenced, among other things, by weight distribution and (quasi-static and dynamic) roll-couple distribution. Tire force and moment relationships have a distinct shapes, but they all commonly rise to a peak value at a given slip angle value and then fall off with increasing slip angle. Severe handling maneuvers, like the SWD operate at slip angles that are at, or above, the peak lateral force.
Technical Paper

The Three Suspension Roll Centers and their Application to Vehicle Dynamics

2014-04-01
2014-01-0136
The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior.
Technical Paper

Shudder and Frictional Characteristics Evaluation of Dual Clutch Transmission Fluids

2014-04-01
2014-01-1988
Under the initiative of The United States Council for Automotive Research LLC (USCAR) [1], we have developed and run comprehensive friction tests of dual clutch transmission fluids (DCTFs). The focus of this study is to quantify the anti-shudder durability over a simulated oil life of 75,000 shifts. We have evaluated six DCT fluids, including 2 fluids with known field shudder performance. Six different tests were conducted using a DC motor-driven friction test machine (GK test bench): 1. Force Controlled Continuous Slip, 2. Dynamic Friction, 3. Speed controlled Acceleration-Deceleration, 4. Motor-torque controlled Acceleration-Deceleration, 5. Static Friction, and 6. Static Break-Away. The test fluids were aged (with the clutch system) on the test bench to create a realistic aging of the entire friction system simultaneously.
Technical Paper

Rapid Residual Stress and Distortion Prediction in Cast Aluminum Components Using Artificial Neural Network and Part Geometry Characteristics

2014-04-01
2014-01-0755
Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Technical Paper

Optimization of the Customer Experience for Routine Handling Performance

2015-04-14
2015-01-1588
Rapidly increasing customer, financial, and regulatory pressures are creating clear changes in the calculus of vehicle design for modern automotive OEM's (Original Equipment Manufacturers). Customers continue to demand shorter product lifecycles; the increasingly competitive global market exerts pressure to reduce costs in all stages of development; and environmental regulations drive a continuous need to reduce mass and energy consumption. OEM's must confront these challenges while continuing to satisfy the customer. The foundation to meeting these challenges includes: (1) Continued development of objective metrics to quantify performance; (2) Frontloading vehicle design content and performance synthesis; (3) A precise understanding of the customer and their performance preferences under diverse usage conditions. These combined elements will enable products better optimized amongst competing (and often contradictory) imperatives.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Technical Paper

Electric Traction Motors for Cadillac CT6 Plugin Hybrid-Electric Vehicle

2016-04-05
2016-01-1220
The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Technical Paper

Effect of Pre-treatment on Corrosion Performance of AZ31B Magnesium Alloy Panel

2010-04-12
2010-01-0725
AZ31B Mg sheet is being considered for automotive applications. This study investigates the effect of pre-treatments, such as heat-treatments and surface treatments, on the corrosion performance of AZ31B sheet, with a goal of learning which pre-treatment can improve corrosion resistance of the sheet material in production. It is found that the heat-treatment and oxidation during a warm and hot forming (WHF) process will not deteriorate the corrosion performance of the AZ31B sheet; polishing and acid etching can clean the surface and significantly increase the corrosion resistance, but corrosion can be accelerated by sandblasting which contaminates the surface. The change in corrosion performance can be associated with surface cleaning or contamination of the sheet by these pre-treatments. Furthermore, the influence of a pre-treatment on the uncoated AZ31B sheet may affect its corrosion behavior after coating.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Algorithm-in-the-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing

2010-04-12
2010-01-0367
In a math-based control algorithm design, model-based simulation and testing are very important as an integral part of design process. There are many advantages of using modeling and simulation in the algorithm design. In this paper, Algorithm-in-the-Loop and Hardware-in-the-Loop approaches are adopted for a transmission control algorithm development. A practical approach is introduced on how to test the control algorithms with a reliable plant (virtual engine, transmission, and vehicle) model in the closed-loop simulation. In using combination of open-loop and closed-loop simulations, various key behavior test cases are developed and documented for the success of control algorithms development. Secondly, the same test cases are reused and verified against the production codes, which are automatically generated from the math-based control algorithm models.
X