Refine Your Search

Topic

Author

Search Results

Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Technical Paper

Usage of Telematics for Battery and Vehicle State Monitoring

2011-04-12
2011-01-0748
This paper presents Telematics Battery Monitoring (TBM). TBM is a multi-faceted approach of collecting and analyzing electric power and vehicle data used to ultimately determine battery state of charge (SOC) and battery state of health (SOH) in both pre- and post-sale environments. Traditional methods of battery SOC analysis include labor intensive processes such as going out to the site of individual vehicle(s), gaining access to the vehicle battery, and then after the vehicle electrical system obtains its quiescent current level, performing a battery voltage check. This time-consuming manual method can practically only cover a small percentage of the vehicle population. In using the vehicle communication capabilities of Telematics, electric power and vehicle data are downloaded, compiled, and post-processed using decision-making software tools.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

2011-04-12
2011-01-0527
Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement in Conventional Vehicles

2011-04-12
2011-01-0345
In this paper, a low-cost means to improve fuel economy in conventional vehicles by employing ultracapacitor based Active Energy Recovery Buffer (AERB) scheme will be presented. The kinetic energy of the vehicle during the coast down events is utilized to charge the ultracapacitor either directly or through a dc-dc converter, allowing the voltage to increase up to the maximum permissible level. When the vehicle starts after a Stop event, the energy stored in the capacitor is discharged to power the accessory loads until the capacitor voltage falls below a minimum threshold. The use of stored capacitor energy to power the accessory loads relieves the generator torque load on the engine resulting in reduced fuel consumption. Two different topologies are considered for implementing the AERB system. The first topology, which is a simple add-on to the conventional vehicle electrical system, comprises of the ultracapacitor bank and the dc-dc converter connected across the dc bus.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Technical Paper

Thermal Behavior Study on HEV Air-Cooled Battery Pack

2011-04-12
2011-01-1368
Recently, an increased emphasis has been seen for improving the cooling uniformity and efficiency of HEV battery pack in an effort to increase the battery performance and life. This study examined the effects of geometry changes in cooling systems of battery packs on thermal behavior of battery cells and pressure drop across the battery pack. Initially, a multi-physics battery thermal model was correlated to physical test data. An analytical design of experiments (DOE) approach using Latin-hypercube technique was then developed by integrating the correlated battery thermal model with a commercial optimization code, iSIGHT, and a morphing code, DEP Morpher. The design concepts of battery pack cooling systems were finally identified by performing analytical DOE/optimization studies to estimate the effects of cooling flow and geometries of cooling ducts on the battery temperature variation and pressure drop across the battery pack.
Journal Article

The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle

2011-04-12
2011-01-0887
The Chevrolet Volt is an electric vehicle (EV) that operates exclusively on battery power as long as useful energy is available in the battery pack under normal conditions. After the battery is depleted of available energy, extended-range (ER) driving uses fuel energy in an internal combustion engine (ICE), an on-board generator, and a large electric driving motor. This extended-range electric vehicle (EREV) utilizes electric energy in an automobile more effectively than a plug-in hybrid electric vehicle (PHEV), which characteristically blends electric and engine power together during driving. A specialized EREV powertrain, called the "Voltec," drives the Volt through its entire range of speed and acceleration with battery power alone, within the limit of battery energy, thereby displacing more fuel with electricity, emitting less CO₂, and producing less cold-start emissions than a PHEV operating in real-world conditions.
Journal Article

The Front Center Airbag

2013-04-08
2013-01-1156
General Motors and the Takata Corporation have worked together to bring to production a new, industry first technology called the Front Center Airbag which is being implemented on General Motors' 2013 Midsize Crossover Vehicles. This paper reviews field data, describes the hardware, and presents occupant test data to demonstrate in-position performance in far side impacts. The Front Center Airbag is an airbag that mounts to the inboard side of the driver front seat. It has a tubular cushion structure, and it deploys between the front seating positions in far side impacts, near side impacts and rollovers, with the cushion positioning itself adjacent the driver occupant's head and torso. This paper includes pictures of the technology along with a basic description of the design. In-position occupant performance is also described and illustrated with several examples. Single occupant and two front occupant far side impact test data are included, both with and without the airbag present.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Technical Paper

Seal Testing in Aerated Lubricants

2011-04-12
2011-01-1209
Typical seal immersion testing in lubricants does not aerate the lubricant as typically seen during normal operation of a transmission or axle. This paper will discuss a new test apparatus that introduces air into transmission fluids and gear oils during seal immersion testing. The seal materials selected for the testing are from current vehicle applications from several different material families. The test results compare the standard properties: change in tensile strength, elongation, hardness, and volume swell. Several tests were completed to investigate and refine the new testing method for seal compatibility testing with transmission fluids and gear oils. Initial results from the first data sets indicate that lubricant aeration helps improve test repeatability. In addition to aeration, the test results explore appropriate fluid immersion temperature for repeatability and appropriate test duration.
Technical Paper

Safety Belt and Occupant Factors Influencing Thoracic & Upper Abdominal Injuries in Frontal Crashes

2011-04-12
2011-01-1129
This paper reports on a study that examines the effect of shoulder belt load limiters and pretensioners as well as crash and occupant factors that influence upper torso harm in real-world frontal crashes. Cases from the University of Michigan International Center for Automotive Medicine (ICAM) database were analyzed. Additional information was used from other databases including the National Highway Traffic Safety Administration (NHTSA) New Car Assessment Program (NCAP), the Insurance Institute for Highway Safety (IIHS), the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS), and patient data available from the University of Michigan Trauma Center. The ICAM database is comprised of information from real-world crashes in which occupants were seriously injured and required treatment at a Level 1 Trauma Center.
Technical Paper

Robust State of Charge Estimation of Lithium-Ion Batteries via an Iterative Learning Observer

2012-04-16
2012-01-0659
This work is to propose a new Iterative Learning Observer (ILO)-based strategy for State Of Charge (SOC) estimation. The ILO is able to estimate the SOC in real time while identifying modeling errors and/or disturbances at the same time. An Electrical-Circuit Model (ECM) is adopted to characterize the Lithium-ion battery behavior. The ILO is designed based on this ECM and the stability is proved. Several experiments are conducted and the collected data is used to extract ECM parameters. The effectiveness of the estimated SOCs via ILO is verified by the experimental results. This implies that the ILO-based SOC determination scheme is effective to identify the SOC in real time.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Reliability and Safety/Integrity Analysis for Vehicle-to-Vehicle Wireless Communication

2011-04-12
2011-01-1045
Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications are gaining increasing importance in automotive research and engineering domains. The novel communication scheme is targeted to improve driver safety (e.g., forward collision warnings) and comfort (e.g., routing to avoid congestion, automatic toll collection, etc.). Features exploiting these communication schemes are still in the early stages of research and development. However, growing attention to system wide infrastructure - in terms of OEM collaboration on interface standardization, protocol standardization, and government supported road/wireless infrastructure - will lead to popularity of such features in the future. This paper focuses on evaluating reliability and safety/integrity of data communicated over the wireless channels for early design verification. Analysis of a design can be done based on formal models, simulation, emulation, and testing.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Probability of a Crash During Plug-in Charging

2011-04-12
2011-01-1008
Plug-in electric vehicles are becoming increasingly popular as the U.S. and other nations look for ways to reduce the usage of petroleum fuels and reduce the carbon emission footprint. Though plug-in electric vehicles offer many advantages over conventional vehicles, they also present some unique potential hazards due to the presence of high voltage in the vehicle. Specifically, potential high voltage hazards can occur if the electric vehicle is crashed by another vehicle during its plug-in charging session. High voltage hazards include the possibility of electrical shock and thermal events as a result of electrical arcing that can cause injury or death to persons that operate or work around plug-in electric vehicles. Automotive Safety Integrity Level (ISO 26262), often abbreviated as ASIL, is used by the automotive industry for determining the ranking of safety hazards.
Technical Paper

Pressure Sensor Simulation Capability for Side Impact Sensing Calibration

2011-04-12
2011-01-0105
There is a growing interest in using pressure sensors to sense side impacts, where the pressure change inside the door cavity is monitored and used to discriminate trigger and non-trigger incidents. In this paper, a pressure sensor simulation capability for side impact sensing calibration is presented. The ability to use simulations for side impact sensing calibration early in the vehicle program development process could reduce vehicle development cost and time. It could also help in evaluating sensor locations by studying the effects of targeted impact points and contents in the door cavity. There are two modeling methods available in LS-DYNA for predicting pressure change inside a cavity, namely airbag method and fluid structure interaction method. A suite of side impact calibration events of a study vehicle were simulated using these two methods. The simulated door cavity pressure time histories were then extracted to calibrate the side sensing system of the study vehicle.
X