Refine Your Search

Topic

Author

Search Results

Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Understanding CAE Needs for Data on Plastics - A Materials Engineer's Perspective

2011-04-12
2011-01-0015
Delivering the appropriate material data for CAE analysis of plastic components is not as straight forward as it would seem to be. While a few of the properties typically used by resin manufacturers and material engineers to describe a plastic are useful to the analysis community (density, CLTE), most are not (flexural modulus, notched izod). In addition some properties such as yield stress are defined differently by the analysis community than by the materials community. Lastly, secondary operations such as painting or chrome plating significantly change the behavior of components with plastic substrates. The materials engineering community and the CAE analysis community must work together closely to develop the material data necessary to increase the capability of the analysis. This paper will examine case studies where these issues have required modifications to the material property data to increase the fidelity of the CAE analysis.
Technical Paper

Transmission Virtual Torque Sensor - Absolute Torque Estimation

2012-04-16
2012-01-0111
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by the transmission. Clearly, torque regulation is important for transmission control. Unfortunately, a physical torque sensor has been too costly for production applications. With no torque measurement for feedback, controls in AT is mainly implemented in an open-loop fashion. Therefore, complicated adaptation algorithms are necessary while undesired shifts may still occur. To further simplify the controls and enhance its consistency and robustness, a direct torque feedback has long been desired in transmission control synthesis and development. A “virtual” torque sensor (VTS) algorithm has recently been developed to show a good potential in estimating relative torque along transmission output shaft using transmission output speed sensor and wheel speed sensors.
Technical Paper

Transmission Algorithm Development using System Simulation (Virtual Vehicle)

2011-04-12
2011-01-1233
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have had to cope with increasing levels of system complexity while at the same time being forced by the marketplace to improve system quality, reduce development costs, and improve time to market. General Motors Powertrain (GMPT) chose to meet these challenges through General Motors Company's Road-to-Lab-to-Math (RLM) strategy, particularly the Math-based method of a virtual vehicle simulation environment called System Simulation. The use of System Simulation to develop transmission control algorithms has enabled GMPT to improve product quality and reduce development times and costs associated with the dependence on physical prototypes. Additionally, System Simulation has facilitated the reuse of GMPT controls development assets, improving overall controls development efficiency.
Journal Article

Torque Converter Clutch Optimization: Improving Fuel Economy and Reducing Noise and Vibration

2011-04-12
2011-01-0146
The torque converter and torque converter clutch are critical devices governing overall power transfer efficiency in automatic transmission powertrains. With calibrations becoming more aggressive to meet increasing fuel economy standards, the torque converter clutch is being applied over a wider range of driving conditions. At low engine speed and high engine torque, noise and vibration concerns originating from the driveline, powertrain or vehicle structure can supersede aggressive torque converter clutch scheduling. Understanding the torsional characteristics of the torque converter clutch and its interaction with the drivetrain can lead to a more robust design, operation in regions otherwise restricted by noise and vibration, and potential fuel economy improvement.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle

2011-04-12
2011-01-0887
The Chevrolet Volt is an electric vehicle (EV) that operates exclusively on battery power as long as useful energy is available in the battery pack under normal conditions. After the battery is depleted of available energy, extended-range (ER) driving uses fuel energy in an internal combustion engine (ICE), an on-board generator, and a large electric driving motor. This extended-range electric vehicle (EREV) utilizes electric energy in an automobile more effectively than a plug-in hybrid electric vehicle (PHEV), which characteristically blends electric and engine power together during driving. A specialized EREV powertrain, called the "Voltec," drives the Volt through its entire range of speed and acceleration with battery power alone, within the limit of battery energy, thereby displacing more fuel with electricity, emitting less CO₂, and producing less cold-start emissions than a PHEV operating in real-world conditions.
Journal Article

The Effect of Surface Finish on Aluminum Sheet Friction Behavior

2011-04-12
2011-01-0534
Aluminum sheet is commercially available in three surface finishes, mill finish (MF), electric discharge texture (EDT), and dull finish (DF). This surface finish impacts the friction behavior during sheet metal forming. A study was done to compare ten commercially available sheet samples from several suppliers. The friction behavior was characterized in the longitudinal and transverse directions using a Draw Bead Simulator (DBS) test, resulting in a coefficient of friction (COF) value for each material. Characterization of the friction behavior in each direction provides useful data for formability analysis. To quantitatively characterize the surface finish, three-dimensional MicroTexture measurements were done with a WYKO NT8000 instrument. In general, the MF samples have the smoothest surface, with Sa values of 0.20-0.30 μm and the lowest COF values. The EDT samples have the roughest surface, with Sa values of 0.60-1.00 μm, and the highest COF values.
Technical Paper

The Effect of Strain on Stainless Steel Surface Finish

2011-04-12
2011-01-0774
The bright surface finish of exterior automotive moldings made from stainless steel can become hazed and reflections distorted as a result of forming done during the manufacturing processes. Bright moldings are frequently used to give styling differentiation accents to vehicle exteriors. Stainless steel provides cost effective differentiation with a material that is durable and relatively easy to form to shapes desired by the stylist. Because of the desirable attributes of stainless steel, an understanding of the threshold of unacceptable surface appearance is necessary to maximize showroom appeal and avoid customer complaints that result in warranty claims. This paper quantifies the effect that manufacturing strain and strain rate have on the surface finish of 436M2 stainless steel. Controlled experiments were conducted on production grade stainless steel strips subjected to a variety of strain and strain rates typical of manufacturing processes.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Technical Paper

Seal Testing in Aerated Lubricants

2011-04-12
2011-01-1209
Typical seal immersion testing in lubricants does not aerate the lubricant as typically seen during normal operation of a transmission or axle. This paper will discuss a new test apparatus that introduces air into transmission fluids and gear oils during seal immersion testing. The seal materials selected for the testing are from current vehicle applications from several different material families. The test results compare the standard properties: change in tensile strength, elongation, hardness, and volume swell. Several tests were completed to investigate and refine the new testing method for seal compatibility testing with transmission fluids and gear oils. Initial results from the first data sets indicate that lubricant aeration helps improve test repeatability. In addition to aeration, the test results explore appropriate fluid immersion temperature for repeatability and appropriate test duration.
Technical Paper

Relative Torque Estimation on Transmission Output Shaft with Speed Sensors

2011-04-12
2011-01-0392
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by transmission output shaft, so that torque regulation is critical in transmission shift control and etc. However, since a physical torque sensor is expensive, current shift control in AT is usually achieved by tracking a turbine speed profile due to the lack of the transmission output torque information. A direct torque feedback has long been desired for transmission shift control enhancement. This paper addresses a “virtual” torque sensor (VTS) algorithm that can provide an accurate estimate on the torque variation in the vehicle transmission output shaft using (existing) speed sensors. We have developed the algorithm using both the transmission output speed sensor and anti-lock braking system speed sensors. Practical solutions are provided to enhance the accuracy of the algorithm. The algorithm has been successfully implemented on both FWD and RWD vehicles.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Quantifying Enclosed Space and Cargo Volume

2011-04-12
2011-01-0781
Industry standards and practices define a number of mathematical and physical methods to estimate the cargo carrying volume capacity of a vehicle. While some have roots dating back decades, others try to assess the utility of the space for cargo by subjective measurements. Each these methods have their own inherent merits and deficiencies. The purpose of this paper is to highlight the differences in calculated cargo volume amongst the following practices: Society of Automobile Engineers (SAE) J1100[1] International Organization for Standardization (ISO 3832)[2], Global Car manufacturer's Information Exchange group (GCIE)[3], Consumer Reports[4]. This paper provides a method and associated rationale for constructing a new cargo volume calculation practice that attempts to harmonize these procedures into a more contiguous practice. This homologation will benefit publishing industry, vehicle manufacturers and customers alike.
Technical Paper

Prevention of Premature Failure of Electric Motors in Proximity to Lubricants

2011-04-12
2011-01-0207
Small electric DC (Direct Current) motors used to actuate various mechanisms in vehicles have failed prematurely when exposed to some formulations of lubricants, which leached into the motor and caused shorting. The subject study explored this failure mechanism in detail as evidenced in vehicle power door lock actuators. Experiments were conducted through the application of various types of lubricants to motors in varying ways to re-create the failure mode experienced by the authors, and to determine an optimized selection of lubricant for maximized cycle life, robust to inherent component manufacturing process variation in both the amount and location of lubrication placement. The detailed data, photographs and conclusions which resulted were summarized. The electric motor failure mode experienced in the example situation was first explained and illustrated with detailed photography.
Technical Paper

Power Modules and Inverter Evaluation for GM Electrification Architectures

2012-04-16
2012-01-0340
GM has recently developed two kinds of vehicle electrification architectures. First is VOLTec, a heavy electrification architecture, and second is eAssist, a light electrification architecture. An overview, of IGBT power modules & inverters used in VOLTec and eAssist, is presented. Alternative power modules from few cooperative suppliers are also described in a benchmarking study using key metrics. Inverter test set up, procedure and instrumentation used in GM Power Electronics Development Lab, Milford are described. GM electrification journey depends on Power Electronics lab' passive test benches; double pulse tester, inductive resistive load bench and active emulator test cell without electric machines. Such test benches are preferred before dyne test cells are used for inverter software/hardware integration and motor durability tests cycles. Specific test results are presented.
Journal Article

Performance Characterization of a Triple Input Clutch, Layshaft Automatic Transmission Using Energy Analysis

2013-12-15
2013-01-9042
This paper details the design and operating attributes of a triple input clutch, layshaft automatic transmission (TCT) with a torque converter in a rear wheel drive passenger vehicle. The objectives of the TCT design are to reduce fuel consumption while increasing acceleration performance through the design of the gearing arrangement, shift actuation system and selection of gear ratios and progression. A systematic comparison of an 8-speed TCT design is made against a hypothetical 8-speed planetary automatic transmission (AT) with torque converter using an energy analysis model based upon empirical data and first principles of vehicle-powertrain systems. It was found that the 8-speed TCT design has the potential to provide an approximate 3% reduction in fuel consumption, a 3% decrease in 0-100 kph time and 30% reduction in energy loss relative to a comparable 8-speed planetary AT with an idealized logarithmic ratio progression.
Technical Paper

Optimizing Exhaust System Design To Minimize Shipping Costs

2011-04-12
2011-01-1256
The design of an existing GM exhaust system is analyzed for possible design modifications that may result in lower shipping costs between the supplier facility that manufactures the exhaust system and the assembly plant that installs the system. Investment, changes in piece cost, and other factors are examined in order to determine design changes based upon a rate of return on the investment.
Technical Paper

Modeling Dynamic Stiffness of Rubber Isolators

2011-04-12
2011-01-0492
Rubber isolators and bushings are very important components for vehicle performance. However, one often finds it is difficult to get the dynamic properties to be readily used in CAE analysis, either from suppliers or from OEM's own test labs. In this paper, the author provides an analytical method to obtain the dynamic stiffness of an exhaust isolator, using ABAQUS and iSight, with tested or targeted isolator static stiffness information. The analysis contains two steps. The first step is to select the (rubber/EPDM) material properties for the FE isolator model by matching the static stiffness with either the targeted spring rate (linear or nonlinear) or the (tested) load / deflection curve. The second step is to perform dynamic analysis on the statically “validated” FE isolator model to obtain its dynamic properties.
Technical Paper

Model Based Torque Converter Clutch Slip Control

2011-04-12
2011-01-0396
To realize better fuel economy benefits from transmissions, car makers have started the application of torque converter clutch control in second gear and beyond, resulting in greater demand on the torque converter clutch (TCC) and its control system. This paper focuses on one aspect of the control of the torque converter clutch to improve fuel economy and faster response of the transmission. A TCC is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. However, due to the non-linear nature of the torque converter fluid coupling, the slip feedback control has to be very active to handle different driver inputs and road-load conditions, such as different desired slip levels, changes in engine input torques, etc. This non-linearity requires intense calibration efforts to precisely control the clutch slip in all the scenarios.
X