Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

The Simulation of Air Induction Noise Using 1D-3D Coupling

2011-04-12
2011-01-0500
Compartment noise has gained significant importance to meet customer expectation. One of the sources of noise is air intake noise. Intake noise is produced by both opening and closing of the inlet valve. This makes source noise critical to the development of air induction system. The new approach has been thought for noise analysis of Air Induction System (AIS) to identify source noise using 1D-3D coupling. It is very difficult to simulate engine and air induction system in Computational Fluid Dynamics (CFD) due to complexities in geometry. The objective of the present study is to predict the pulsed noise and flow noise using 1D-3D coupling. The engine with 1D code and AIS with 3D CFD code is simulated. Engine pulsation from GT-Power is provided as an input boundary condition to ANSYS Fluent. GT-Power exchanges boundary values to 3D computation domain at each CFD time step through special connections. The CFD code is run with implicit discretisation scheme and SAS turbulence model.
Technical Paper

The Effect of Pt-Pd Ratio on Oxidation Catalysts Under Simulated Diesel Exhaust

2011-04-12
2011-01-1134
With a tighter regulatory environment, reduction of hydrocarbon emissions has emerged as a major concern for advanced low-temperature combustion engines. Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for diesel exhaust hydrocarbon oxidation. The efficiency of hydrocarbon oxidation is greatly enhanced by employing both Pt and Pd together compared to the case with Pt or Pd alone. However, there have been few systematic studies to investigate the effects of the ratio of platinum to palladium on catalytic oxidation over the DOC. The present study illustrates the relationship between the Pt-Pd ratio and catalyst activity and stability by evaluating a series of catalysts with various Pt to Pd ratios (1:0, 7:1, 2:1, 1:2, 1:5, 0:1). These catalysts were tested for their CO and hydrocarbon light-off temperatures under simulated conditions where both unburned and partially burned hydrocarbons were present.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
Technical Paper

Structural-Acoustic Analysis of Vehicle Body Panel Participation to Interior Acoustic Boom Noise

2011-04-12
2011-01-0496
A structural-acoustic finite element model of an automotive vehicle is developed and applied to evaluate the effect of structural and acoustic modifications to reduce low-frequency ‘boom’ noise in the passenger compartment. The structural-acoustic model is developed from a trimmed body structural model that is coupled with an acoustic model of the passenger compartment and trunk cavities. The interior noise response is computed for shaker excitation loads at the powertrain mount attachment locations on the body. The body panel and modal participation diagrams at the peak response frequencies are evaluated. A polar diagram identifies the dominant body panel contributions to the ‘boom’ noise. A modal participation diagram determines the body modes that contribute to the ‘boom’ noise. Finally, structural and acoustic modifications are evaluated to determine their effect on reducing the ‘boom’ noise and on the overall lower-frequency sound pressure level response.
Technical Paper

Small Amplitude Torsional Steering Column Dynamics on Smooth Roads: In-Vehicle Effects and Internal Sources

2011-04-12
2011-01-0560
Internally excited torsional steering wheel vibrations at frequencies near 8-22 Hz on smooth roads can produce driver disturbances, commonly described as “SHAKE”. These vibrations are primarily excited by the rotating front suspension corners and are periodic in the rotational frequencies of the tire-wheel assemblies. The combination of vehicular dynamic amplification originating in dominant suspension and steering system vibratory modes, and a sufficiently large 1st harmonic non-uniformity excitation of the rotating corner components, can result in periodic vibrations exceeding thresholds of disturbance. Controlling the periodic non-uniformity excitation through individual component requirements (e.g., wheel imbalance, tire force variation, wheel runout, concentric piloting of wheel on hub) is difficult since the desired upper limits of individual component requirements for vibration-free performance are typically beyond industry capability.
Technical Paper

Robust Design of a Light Weight Flush Mount Roof Rack

2011-04-12
2011-01-1274
Roof racks are designed for carrying luggage during customers' travels. These rails need to be strong enough to be able to carry the luggage weight as well as be able to withstand aerodynamic loads that are generated when the vehicle is travelling at high speeds on highways. Traditionally, roof rail gage thickness is increased to account for these load cases (since these are manufactured by extrusion), but doing so leads to increased mass which adversely affects fuel efficiency. The current study focuses on providing the guidelines for strategically placing lightening holes and optimizing gage thickness so that the final design is robust to noise parameters and saves the most mass without adversely impacting wind noise performance while minimizing stress. The project applied Design for Six Sigma (DFSS) techniques to optimize roof rail parameters in order to improve the load carrying capacity while minimizing mass.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Radiated Fuel Tank Slosh Noise Simulation

2011-04-12
2011-01-0495
With the introduction of hybrid vehicles and the associated elimination of engine and exhaust masking noises, sounds from other sources is becoming more noticeable. Fuel tank sloshing is one of these sources. Fuel sloshing occurs when a vehicle is accelerated in any direction and can create noise that may be perceived as a quality issue by the customer. To reduce slosh noise, a fuel tank has to be carefully designed. Reduction in slosh noise using test- based methods can be very costly and timely. This paper shows how, using the combination of CFD (Computational Fluid Dynamic), FE (Finite Element) and Acoustic simulation methods, the radiated fuel tank slosh noise performance can be evaluated using CAE methods. Although the de-coupled fluid /structure interaction (FSI) method was used for the examples in this paper, the acoustic simulation method is not limited to the decoupled FSI method.
Technical Paper

Particle Size and Number Emissions from Modern Light-Duty Diesel Vehicles

2011-04-12
2011-01-0632
This paper focuses on measuring particle emissions of a representative light-duty diesel vehicle equipped with different engine exhaust aftertreatment in close-coupled position, including one designed to meet the upcoming Euro 6 emission standards. The latter combines a lean NOx trap (LNT) and a diesel particulate filter (DPF) in series to simultaneously reduce NOx and PM. Particle Matter (PM) and particle number emissions are measured throughout testing procedure and instrumentation which are compliant with the UN-ECE Regulation 83 proposals. Specifically measuring devices for particle number emissions, provided by two different suppliers, are alternatively used. No significant differences are observed due to the different system employed. On the other hand particle size distributions are measured by means of a specific experimental set-up including a two stage dilution system and an electrical low pressure impactor (ELPI).
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Optimum Constraint Strategy for Liftgates

2011-04-12
2011-01-0766
The present study defines the functional requirements for a liftgate and the body in order to avoid rattle, squeak, and other objectionable noises. A Design For Six Sigma (DFSS) methodology was used to study the impact of various constraint components such as bumpers, wedges, and isolated strikers on functional requirements. These functional requirements include liftgate frequency, acoustic cavity frequency, and the stiffness of the liftgate body opening. It has been determined that the method of constraining the gate relative to the body opening has a strong correlation to the noise generated. The recommended functional performance targets and constraint component selection have been confirmed by actual testing on a vehicle. Recommendations for future liftgate design will be presented.
Technical Paper

Optimizing Exhaust System Design To Minimize Shipping Costs

2011-04-12
2011-01-1256
The design of an existing GM exhaust system is analyzed for possible design modifications that may result in lower shipping costs between the supplier facility that manufactures the exhaust system and the assembly plant that installs the system. Investment, changes in piece cost, and other factors are examined in order to determine design changes based upon a rate of return on the investment.
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Technical Paper

Individual Cylinder Air-Fuel Ratio Control Part I: L3 and V6 Engine Applications

2011-04-12
2011-01-0695
A frequency-domain approach to balancing of air-fuel ratio (A/F) in a multi-cylinder engine is described. The technique utilizes information from a single Wide-Range Air-Fuel ratio (WRAF) or a single switching (production) O₂ sensor installed in the exhaust manifold of an internal combustion engine to eliminate the imbalances. At the core of the proposed approach is the development of a simple novel method for the characterization of A/F imbalances among the cylinders. The proposed approach provides a direct objective metric for the characterization of the degree of A/F imbalances for diagnostic purposes as well as a methodology for the control of A/F imbalances among various cylinders. The fundamental computational requirement is based on the calculation of a Discrete Fourier Transform (DFT) of the A/F signal as measured by a WRAF or a switching O₂ sensor.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
X