Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

“Verify-on-Demand” - A Practical and Scalable Approach for Broadcast Authentication in Vehicle-to-Vehicle Communication

2011-04-12
2011-01-0584
In general for Vehicle-to-Vehicle (V2V) communication, message authentication is performed on every received wireless message by conducting verification for a valid signature, and only messages that have been successfully verified are processed further. In V2V safety communication, there are a large number of vehicles and each vehicle transmits safety messages frequently; therefore the number of received messages per second would be large. Thus authentication of each and every received message, for example based on the IEEE 1609.2 standard, is computationally very expensive and can only be carried out with expensive dedicated cryptographic hardware. An interesting observation is that most of these routine safety messages do not result in driver warnings or control actions since we expect that the safety system would be designed to provide warnings or control actions only when the threat of collision is high.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Will Your Battery Survive a World With Fast Chargers?

2015-04-14
2015-01-1196
Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and to quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios.
Technical Paper

What FutureCar MPG Levels and Technology Will be Necessary?

2002-06-03
2002-01-1899
The potential peaking of world conventional oil production and the possible imperative to reduce carbon emissions will put great pressure on vehicle manufacturers to produce more efficient vehicles, on vehicle buyers to seek them out in the marketplace, and on energy suppliers to develop new fuels and delivery systems. Four cases for stabilizing or reducing light vehicle fuel use, oil use, and/or carbon emissions over the next 50 years are presented. Case 1 - Improve mpg so that the fuel use in 2020 is stabilized for the next 30 years. Case 2 - Improve mpg so that by 2030 the fuel use is reduced to the 2000 level and is reduced further in subsequent years. Case 3 - Case 1 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. Case 4 - Case 2 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. The mpg targets for new cars and light trucks require that significant advances be made in developing cost-effective and very efficient vehicle technologies.
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

Voltec Charging System EMC Requirements and Test Methodologies

2011-04-12
2011-01-0742
With the advent of vehicle manufacturer driven on-board charging systems for plug-in and extended range electric vehicles, such as the Chevrolet Volt, important considerations need to be comprehended in both the requirements specified as well as the test methodologies and setups for electromagnetic compatibility (EMC). Typical automotive EMC standards (such as the SAE J551 and SAE J1113 series) that cover 12 volt systems have existed for many years. Additionally, there has been some development in recent years for high voltage EMC for automotive applications. However, on-board charging for vehicles presents yet another challenge in adopting requirements that have typically been in the consumer industry realm and merging those with both the traditional 12 V based system requirements as well as high voltage based systems.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Journal Article

Virtual Tire Data Influence on Vehicle Level Handling Performance

2015-04-14
2015-01-1570
This study presents the comparison of vehicle handling performance results obtained using physical test tire data and a tire model developed by means of Finite Element Method. Real tires have been measured in laboratory to obtain the tire force and moment curves in terms of lateral force and align torque as function of tire slip angle and vertical force. The same tire construction has been modeled with Finite Element Method and explicit formulation to generate the force and moment response curves. Pacejka Magic Formula tire response models were then created to represent these curves from both physical and virtual tires. In the sequence, these tire response models were integrated into a virtual multibody vehicle model developed to assess handling maneuvers.
Technical Paper

Virtual Road Load Data Acquisition in Practice at General Motors

2011-04-12
2011-01-0025
Measured vehicle loads have traditionally been used as the basis for development of component, subsystem and vehicle level durability tests. The use of measured loads posed challenges due to the availability of representative hardware, scheduling, and other factors. In addition, stress was placed on existing procedures and methods by aggressive product development timing, variety in tuning and equipment packages, and higher levels of design optimization. To meet these challenges, General Motors developed new processes and technical competencies which enabled the direct substitution of analytically synthesized loads for measured data. This process of Virtual Road Load Data Acquisition (vRLDA) enabled (a) conformance to shortened product development cycles, (b) greater consistency between design targets and validation requirements, and (c) more comprehensive data.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Journal Article

Vehicle-Level EMC Modeling for HEV/EV Applications

2015-04-14
2015-01-0194
Electromagnetic compatibility (EMC) is becoming more important in power converters and motor drives as seen in hybrid electric vehicles (HEV) to achieve higher reliability of the vehicle and its components. Electromagnetic interference (EMI) of the electronic components for a vehicle are evaluated and validated at a component-level test bench; however, it is sometimes observed that the EMI level of the components can be changed in a vehicle-level test due to differences in the vehicle's configuration (cable routing, connecting location etc.). In this presentation, a vehicle-level EMC simulation methodology is introduced to estimate radiated emissions from a vehicle. The comparison between the simulation and measurement results is also presented and discussed.
Technical Paper

Vehicle System Impacts of Fuel Cell System Power Response Capability

2002-06-03
2002-01-1959
The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7 seconds. DIRECT, a derivative-free optimization algorithm, was used in conjunction with ADVISOR, a vehicle systems analysis tool, to systematically change both powertrain component sizes and the vehicle energy management strategy parameters to provide optimal vehicle system configurations for the range of response capabilities.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Technical Paper

Vehicle Crash and Steering Column Frequency Simulation of an Aluminum Instrument Panel Structure

2011-04-12
2011-01-0765
Recent changes to the U.S. CAFÉ (Corporate Average Fuel Economy) requirements have caused increased focus on alternative vehicle component designs that offer mass savings while maintaining overall vehicle design and performance targets. The instrument panel components comprise approximately 6% of the total vehicle interior mass and are thus a key component of interest in mass optimization efforts. Typically, instrument panel structures are constructed of low carbon tubular steel cross car members with welded stamped steel component brackets. In some cases, instrument panel structures have incorporated high strength low alloy (HSLA) steels to reduce mass by reducing gage. In this study, aluminum low mass instrument panel structure concept designs are developed. This paper illustrates the differences between a HSLA steel solution and four different aluminum instrument panel structure designs.
Technical Paper

Vehicle Acoustic Sensitivity Performance Using Virtual Engineering

2011-04-12
2011-01-1072
In order to assess the possible ways of energy transfer from the various sources of excitation in a vehicle assembly to a given target location, frequency based substructuring technique and transfer path analysis are used. These methods help to locate the most important energy transfer paths for a specific problem, and to evaluate their individual effects on the target, thus providing valuable insight into the mechanisms responsible for the problem. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc. This paper is devoted to identify the noise transfer paths and the force transmissibility among the interfaces of different components in the vehicle for the low to mid frequency range.
X