Refine Your Search

Topic

Author

Search Results

Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

The Strain Gauge Goniometer, a New Sensor to Measure Dummy Joint Angles Under Crash Conditions

2000-03-06
2000-01-0058
The paper describes the use of strain gauge goniometers to measure dummy leg joint angles in impact tests. The instruments have been developed based on regular goniometers used for human gait analysis. Specific modifications enhanced the mechanical stability and the electrical insulation of the sensors. They are now compatible with standard crash data acquisition systems. Several vehicle crash tests have been analyzed using the goniometers as a supplementary measurement device. Due to its low weight, the device does not significantly alter the dummy behavior. Further areas of application are outlined in the paper.
Technical Paper

The Influence of Calcium Treatment on the Mechanical Properties of Plain Carbon (SAE 1050) Steel

1994-03-01
940253
The influence of calcium treatment on the mechanical properties of a plain carbon steel (SAE 1050) was investigated. The mechanical properties investigated were tensile and impact strength, fatigue crack growth rate, and the fatigue threshold. Impact testing was conducted at both room temperature and at -40°C. Several heats of both calcium and non-calcium treated steel (SAE 1050) were tested in both the as hot-rolled condition and in the quenched and tempered condition (with a hardness level of HRC = 45). The results of this investigation show no significant difference in the tensile properties or room temperature impact properties between the calcium treated and the non-calcium treated steels. However, the impact strengths of calcium treated steels were slightly higher than that of non-calcium treated steels at -40°C.
Technical Paper

Simulation of Frontal Barrier Offset Impacts and Comparison of Intrusions and Decelerations

1995-02-01
950647
The European safety regulation plan regarding frontal barrier offset impact calls for 30° angular impact protection in 1995 and a perpendicular 40% offset deformable barrier impact protection in the 1998 time frame. However, various other governmental and private agencies are looking at alternative test conditions. The Auto Motor and Sport Magazine and other insurance agencies have been conducting rigid barrier front impact tests at 40 and 50% offsets. In this study various test conditions were examined analytically. Detailed finite element models were developed to understand the implications of these impact conditions. The models provided insight into energy management mechanism, load transfer and vehicle deformation patterns due to offset impacts on to perpendicular and angular barriers. Several potential offset conditions were simulated using the FEA models.
Technical Paper

Seatback Strength and Occupant Response in Rear Impact Crash: Observations with Respect to Large Occupant Size and Position

2010-04-12
2010-01-1029
Seatback strength and injury potential in moderate to high-speed rear-end collisions were investigated in a series of 12 HYGE sled tests. The test methodology included the use of instrumented Hybrid-III anthropomorphic test devices (ATDs). Four tests employed a 95th percentile male ATD ballasted to a total weight of 300 lbs and subjected to approximate 15 mph Delta-V impacts. The remaining tests employed an unmodified 50th percentile male ATD with impacts of approximately 25 mph Delta-V, and three ATD positions, including two "out of position" postures corresponding to leaning forward ("forward" position), and leaning forward and inboard ("radio" position). Seats from three different vehicles were tested, representing a range of strength values. Upper neck values for N were less than 1.0 in all cases. Lower neck N values sometimes exceeded 1.0 with the 50th percentile male ATD out of position, and these values did not trend with seatback strength.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

Results of the Motor Vehicle Manufacturers Association Component and Full-Vehicle Side Impact Test Procedure Evaluation Program

1985-01-01
856087
This paper presents an extensive research program undertaken to develop improved side impact test methods. The development of a component side impact test device along with an associated test procedure are reviewed. The results of accident data analysis techniques to define anatomical areas most likely to be injured during side impact and definition of test device response corridors based on human surrogate testing conducted by the Association Peugeot/Renault and the University of Heidelberg are discussed. The relationship of response corridors and accident data analysis in earlier phases of the project resulted in definition and development of a component side impact test device to represent the human thorax. A test program to evaluate and compare component and full-vehicle test results is presented.
Technical Paper

Research and Development for Lower Lateral Force Armrests

1995-11-01
952734
While evaluating the BIOSID advanced side impact dummy in full scale crash tests, we noticed higher than expected abdominal rib deflections. This finding led to a search to determine whether these deflections were an artifact of the dummy or whether the dummy was indicating that some portion of the vehicle side, in the area of the armrest, was laterally stronger than expected. Many armrests/trim panels were procured and both quasi-statically and dynamically tested using newly-devised test procedures. A team was formed to evaluate armrest/trim panel construction and to develop a biomechanically-based laboratory test procedure to help determine the effects of design and material changes. This team continues to function and a spin-off team is seeking to develop analytical predictive tools to allow speedier development of armrest/trim panels attuned to the new test procedure.
Technical Paper

Racing Car Restraint System Frontal Crash Performance Testing

1994-12-01
942482
This paper presents the results of a series of over 30 impact sled simulations of racing car frontal crashes conducted as part of the GM Motorsports Safety Technology Research Program. A Hyge™ impact sled fitted with a simulated racing car seat and restraint system was used to simulate realistic crash loading with a mid-size male Hybrid III dummy. The results of tests, in the form of measured loads, displacements, and accelerations, are presented and comparisons made with respect to the levels of these parameters seen in typical passenger car crash testing and to current injury threshold values.
Technical Paper

Prediction of Front TTI in NHTSA Side Impact Using a Regression-Based Approach

2000-03-06
2000-01-0636
Vehicle side impact performance is potentially affected by a large number of parameters which may be related to body stiffness and energy absorption characteristics, and packaging dimensions. An understanding of the principal variables controlling TTI (Thoracic Trauma Index) is fundamental to the achievement of high LINCAP (Lateral Impact New Car Assessment Program) rating especially for sedans. In the present study, the effects on TTI of the following are considered: response-related parameters such as velocity and intrusion (which are in turn related to body structure), countermeasures such as side airbag, and dummy to structure clearance dimensions. With the help of test data gathered from side impact tests carried out on cars and trucks at Ford, a new “best subset” regression model is developed and is shown to be able to predict TTI for a number of LINCAP tests which were not part of the suite used in the derivation of the model.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

Normalization of Head Impact Test Data to 24 km/h

1997-02-24
970389
This paper provides a methodology for adjustment of off-speed head impact test data to the required 24.14 km/h for interior head impact. The “Normalization Process” utilizes the Generic Waveform Concept for its basic foundation. Predicted results from FE Head Impact Simulation Model were used to validate the Normalization Process. It is recommended that Normalization should be applied to cases where impact velocities are within ±0.8 km/h speed difference. In general, Normalizing down-speed (from 24.94 to 24.14 km/h) is preferred over Normalizing up-speed (23.33 to 24.14 km/h). One must always check for potentially severe “bottom-out” condition by examining the pulse shape for any abrupt peaks in headform deceleration. The Normalization Process should not be applied to “glancing” impacts in which the impact and rebound vectors are not colinear.
Technical Paper

NHTSA Passenger Car Side Impact Dynamic Test Procedure - Test-To-Test Variability Estimates

1991-02-01
910603
A highly controlled six-vehicle crash test program was conducted to provide an estimate of the test-to-test variability of the NHTSA-proposed passenger car dynamic side impact test procedure. The results of this program showed that the rear seat test dummy response measurements are especially sensitive to various parameters of the test procedure. This paper provides estimates of front and rear seated SID dummy response measurement variability in four-door, 1990 Ford Taurus vehicles. Conclusions and recommendations from this controlled crash test program are made to provide guidance to help reduce the test-to-test variability of the test dummy responses.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Technical Paper

Measurement Techniques for Angular Velocity and Acceleration in an impact Environment

1997-02-24
970575
The University of Virginia is investigating the use of a magnetohydrodynamic (MHD) angular rate sensor to measure head angular acceleration in impact testing. Output from the sensor, which measures angular velocity, must be differentiated to produce angular acceleration. As a precursor to their use in actual testing, a torsional pendulum was developed to analyze an MHD sensor's effectiveness in operating under impact conditions. Differentiated and digitally filtered sensor data provided a good match with the vibratory response of the pendulum for various magnitudes of angular acceleration. Subsequent head drop tests verified that MHD sensors are suitable for measuring head angular acceleration in impact testing.
Technical Paper

LS-DYNA3D Finite Element Model of Side Impact Dummy SID

1997-04-08
971525
Side impact dummy (SID) is a human-like test device used in the National Highway Transportation Safety Administration (NHTSA) mandated side impact test of vehicles sold in the USA. A finite element model of SID has been developed at GM as a part of a project to simulate the side impact test. The objective is to better predict physical test results by replacing traditional rigid-body lumped parameter models with a finite element model. The project included, besides mesh generation, the development of new LS-DYNA3D constitutive models for rubber and foam-like materials, and enhancements of contact interface and other algorithms. This paper describes the GM SID finite element model and its performance in side impact test simulations.
Technical Paper

Investigating Ankle Injury Mechanisms in Offset Frontal Collisions Utilizing Computer Modeling and Case-Study Data

1999-10-10
99SC14
A significant number of documented ankle injuries incurred in automobile accidents indicate some form of lateral loading is present to either cause or influence injury. A high percentage of these cases occur in the absence of occupant compartment intrusion. To date, no specific ankle injury mechanism has been identified to explain these types of injuries. To investigate this problem, several resources were used including full-scale crash test data, finite element models, and case study field data. Results from car-to-car, offset frontal crash tests indicate a significant lateral acceleration (10-18 g) occurs at the same time as the peak in longitudinal acceleration. The combined loading condition results in a significant lateral force being applied to the foot-ankle region while the leg region is under maximum compression.
X