Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
Technical Paper

Utilization of a Chassis Dynamometer for Development of Exterior Noise Control Systems

1997-05-20
972012
The development of systems and components for control of exterior noise has traditionally been done through an iterative process of on road testing. Frequently, road testing of vehicle modifications are delayed due to ambient environmental changes that prevent testing. Vehicle dynamometers used for powertrain development often had limited space preventing far field measurements. Recently, several European vehicle manufacturers constructed facilities that provided adequate space for simulation of the road test. This paper describes the first implementation of that technology in the U.S.. The facility is typical of those used world wide, but it is important to recognize some of the challenges to effective utilization of the technique to correlate this measurement to on road certification.
Technical Paper

Truck Tire Force and Moment in Cornering - Braking - Driving on Ice, Snow, and Dry Surfaces

2000-12-04
2000-01-3431
Accurate, real-world determination of tire force and moment properties is essential for computer modeling of vehicle handling. Characterizing these properties on surfaces ranging from dry pavement to snow to ice presents significant challenges. This paper reviews recent progress and results in this area for light truck tires using a test vehicle custom-designed for this purpose. It provides examples for free-rolling cornering, straight-line acceleration / braking and acceleration / braking in turns. The discussion then turns to the question of adapting the technology used to characterizing of tires for Class 8 vehicles.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

THE GMR 4-4 “HYPREX” ENGINE A CONCEPT OF THE FREE-PISTON ENGINE FOR AUTOMOTIVE USE

1957-01-01
570032
DESCRIBED here is a 250-hp free-piston gasifier-turbine engine that has actually been installed in an automobile. A unique feature of this Hyprex engine is that it is a siamesed unit. The overall design has been selected, according to the author, to secure a compact, light-weight machine with improved thermal efficiency and with a reduction in general noise. Although the engine is still in the experimental stage, the author reports that analysis and results indicate it will be a serious contender for powering automotive vehicles.
Technical Paper

THE BUICK Air Poise SUSPENSION

1958-01-01
580046
THIS paper describes the springs, control system, and ride of the air suspension system on the 1958 Buick. The system is a semiclosed one, providing a variable-rate suspension, automatic leveling and trim control, and manual lift. The latter feature is a knob below the instrument panel which can be operated when necessary to cope with unusual clearance conditions. The car remains at the same height with loads of up to five passengers and 500 lb in the trunk. The authors describe the road-holding ability of a car with this suspension system as excellent.
Technical Paper

Synthesis of Chassis Parameters for Ride and Handling on the 1997 Chevrolet Corvette

1997-02-24
970097
This paper describes the performance attributes of the all-new front and rear SLA (short-long arm) suspensions, steering system, and tires of the 1997 Corvette. The process by which these subsystem attributes flowed down from vehicle-level requirements for ride and handling performance is briefly described. Additionally, where applicable, specific subsystem attributes are rationalized back to a corresponding vehicle-level performance requirement. Suspension kinematic and compliance characteristics are described and contrasted to those of the previous generation (1984 to 1996 Model Year) Corvette. Both synthesis/analysis activities as well as mule-level vehicle development work are cited for their roles in mapping out specific subsystem attributes and related vehicle performance.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Statistical Energy Analysis of Airborne and Structure-Borne Automobile Interior Noise

1997-05-20
971970
This paper describes the application of Statistical Energy Analysis (SEA) and Experimental SEA (ESEA) to calculating the transmission of air-borne and structure-borne noise in a mid-sized sedan. SEA can be applied rapidly in the early stages of vehicle design where the degree of geometric detail is relatively low. It is well suited to the analysis of multiple paths of vibrational energy flow from multiple sources into the passenger compartment at mid to high frequencies. However, the application of SEA is made difficult by the geometry of the vehicle's subsystems and joints. Experience with current unibody vehicles leads to distinct modeling strategies for the various frequency ranges in which airborne or structure-borne noise predominates. The theory and application of ESEA to structure-borne noise is discussed. ESEA yields loss factors and input powers which are combined with an analytical SEA model to yield a single hybrid model.
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

Sound Quality of Impulsive Noises: An Applied Study of Automotive Door Closing Sounds

1999-05-17
1999-01-1684
This paper discusses four general attributes which quantify the character of an impulsive sound event. These attributes include the time duration, amplitude and frequency content of the impulsive noise. A three dimensional plot relating time, frequency and amplitude have been developed for the presentation of the measured data. This format allows graphic illustration of the noise event, providing fast interpretation and communication of the measured sound. Application of this methodology to the sound of an automotive door closing event is presented here. Representative door closing sound events are analyzed, with correlation presented between the attributes above to dynamic events of the physical hardware within the door and vehicle systems. Modifications of the door-in-white, internal door hardware, seal systems and additional content are investigated for their effect on the sound quality of the door closing event. Finally, recommended values for these attributes are presented.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

SEA in Vehicle Development Part I: Balancing of Path Contribution for Multiple Operating Conditions

2003-05-05
2003-01-1546
The application of Statistical Energy Analysis (SEA) to vehicle development is discussed, with a new technique to implement noise path analysis within a SEA model to enable efficient solution and optimization of acoustic trim. A whole vehicle Performance-Based SEA model is used, in which Sound Transmission Loss (STL) and acoustic absorption coefficient characterize subsystem performance. In such a model, the net contribution from each body panel/path, such as the floor, to a specific interior subsystem, such as the driver's head space, is extremely important for vehicle interior noise development. First, it helps to identify the critical path to root-cause potential problems. Second, it is necessary in order to perform balancing of path contributions. With current software, the power based noise contribution analysis is for direct paths/adjacent subsystems.
Technical Paper

Road Transducer - Objective Brake Balance Measurement Without Vehicle Instrumentation

1987-02-01
870266
During braking, the ability to utilize available tire-road friction is determined by brake balance. Previous methods for objectively measuring balance require various degrees of vehicle instrumentation and modification. The Road Transducer is a new measurement technique based on instrumented sections of roadway. Individual braking forces developed by each wheel are measured without vehicle instrumentation, modification, or special set up. This facilitates assessment of many vehicles required for statistical analyses. Brake balance data for several hundred vehicles are presented and provide insight to the nominal levels and variability of braking efficiencies found in the field.
Technical Paper

Power Electronics for GM 2-Mode Hybrid Electric Vehicles

2010-04-12
2010-01-1253
General Motors has developed a portfolio of advanced propulsion vehicles that has set the standard for optimal fuel economy in full-size utility vehicles. An overview of power electronics used in this portfolio, already available in the market, is presented. These components are key enablers for the strategic products in portfolio. Block diagrams for various configurations are also described to show common power electronics components used in traction and auxiliary systems. Briefly real wheel drive (RWD) and front wheel drive (FWD) vehicle applications are described. Specific analysis and test results are presented from development of Traction Power Inverter used in RWD vehicles. Vehicle-based durability profiles are used in analysis to predict IGBT power modules thermal performance. Using key metrics for volume and mass, benchmarking data is also presented.
Technical Paper

Objective Ride and Handling Goals for the 1997 Chevrolet Corvette

1997-02-24
970091
The process of gathering information, analysis, and selection of ride and handling goals for the 1997 Chevrolet Corvette is described. The goals consist of measurable objective metrics and standardized subjective evaluation. The input elements of the process are: the Voice of the Customer, Engineering Direction and Competitive Assessment. As values are developed for the each metric, synthesis and analysis methods are used to confirm the full set of metrics are consistent and non-exclusive. The targets selected guided the chassis design and development of the 1997 Chevrolet Corvette to insure outstanding customer satisfaction in handling and ride.
Technical Paper

Investigation of Fluid Flow Through a Vane Pump Flow Control Valve

1995-04-01
951113
The recent development of a new vane-type pump for power steering applications involved paying special attention to the fluid flow dynamics within the pump casing, especially in the flow control or supercharge region, where excess pump fluid flow is diverted to the intake region. Durability testing of initial designs revealed the presence of cavitation damage to the pump casing in the supercharging region. Subsequent Computational Fluid Dynamics (CFD) analyses as well as experimental Flow Visualization studies aided in resolving the cavitation-damage problem. The purpose of this paper is to describe the processes used in the CFD analyses and flow visualization studies. A two-dimensional (2D) convergence study was conducted to determine the CFD meshing requirements across the small orifice at the intersection of the flow-control valve and the supercharge port. An iterative procedure was employed to determine the operating position of the flow-control valve.
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Technical Paper

General Motors Passenger Tire Performance Criteria

1976-02-01
762008
The purpose of this paper is to provide an overview of the process of selection, development and approval of General Motors original equipment TPC passenger car tires. We have attempted to minimize detail in each specific area, but intend to provide a general comprehension of the thought processes involved and the procedures used to select the proper tire size and type for a vehicle. We will then describe the tire performance criteria involved in the overall development and approval process and will subsequently consider tire noise requirements in somewhat greater detail. The paper will conclude by describing the General Motors Tire Performance Criteria (TPC) System, which is a documentation of the General Motors Tire Performance requirements and test procedures.
X