Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Test Method for Developing Plastic Materials for Applications Wherein a Plastic Part is Rotating or Reciprocating Against a Metal Surface

2005-04-11
2005-01-0876
The wear test introduced in this paper can be used to determine and rank PV (pressure time velocity) capability of plastic materials for applications where a plastic part is rotating or reciprocating against a metal surface. It provides an accelerated test method to evaluate the wear performance of plastic materials. A single test can provide tribological information at multiple PV conditions. The tribological information obtained from this method includes coefficient of friction, PV (pressure times velocity) limits, and interface temperature profile. This test is currently used by General Motors Corporation to develop plastic materials for transmission thrust washer and dynamic seal applications. The test is running in two sequences (A & B), capable of a PV range from 50,000 psi-ft/min 500,000 psi-ft/min, under dry conditions. The PV steps in sequence A are combinations of high pressure and low velocity - for applications where high loads are expected, such as thrust washers.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Technical Paper

Robust Design of Glass Run-Channel Seal

2004-03-08
2004-01-1687
Glass run-channel seals are located between DIW (Door in White) and window glass. They are designed to allow window glass to move smoothly while other two major requirements are met; (1) Provide insulation to water leakage and noise, and (2) Stabilize the window glass during glass movement, door slamming and vehicle operation. For a robust glass guidance system, it is critical to minimize the variation of seal compression force. In addition, it is desired to maintain a low seal compression force, which meets the minimum requirement for insulating water leakage/noise and stabilizing the window glass, for enhancing the durability of glass guidance system. In this paper, a robust synthesis and design concepts on the glass run-channel seal is presented. The developed concept is demonstrated with test data.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Progress Toward a Magnesium-Intensive Engine: The USAMP Magnesium Powertrain Cast Components Project

2004-03-08
2004-01-0654
The US Automotive Materials Partnership (USAMP) and the US Department of Energy launched the Magnesium Powertrain Cast Components Project in 2001 to determine the feasibility and desirability of producing a magnesium-intensive engine; a V6 engine with a magnesium block, bedplate, oil pan, and front cover. In 2003 the Project reached mid-point and accomplished a successful Decision Gate Review for entry into the second half (Phase II) of the Project. Three tasks, comprising Phase I were completed: (1) evaluation of the most promising low-cost, creep-resistant magnesium alloys, (2) design of the engine components using the properties of the optimized alloys and creation of cost model to assess the cost/benefit of the magnesium-intensive engine, and (3) identification and prioritization of scientific research areas deemed by the project team to be critical for the use of magnesium in powertrain applications.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Technical Paper

Plating on Plastics - Exterior Trim Part Properties

2008-04-14
2008-01-1460
Chrome plated automotive exterior parts continue to be popular. A good understanding of the properties of the unplated and plated parts is required to have the lowest cost successful design. In this work, traditional mechanical properties are compared between plated and unplated ABS and ABS+PC grades of plastic. Additional findings are shared for the thermal growth properties that are important to the designer who is trying to minimize gaps to adjacent components and for the engineer who wants the plated parts to resist cracking or peeling. Finally, some bend testing results are reviewed to understand better the susceptibility of the chrome plated plastics to crack when bent. In total, these results will help the exterior trim part designers optimize for cost, fit and finish.
Technical Paper

Plane Stress Fracture Toughness Testing of Die Cast Magnesium Alloys

2002-03-04
2002-01-0077
Plane stress fracture behavior was measured for magnesium alloys AM60B, AM50A, and AZ91D produced by high-pressure die casting. Compact Tension (CT) specimens were obtained from plate samples with approximately 2-5 mm thickness. The compliance unloading technique was used to record crack extension for each specimen. The AM50A and AM60B specimens exhibited stable crack extension beyond ASTM E 1820 limits for Jmax (∼ 33 kJ m-2 and 22 kJ m-2, respectively) and Δamax (2.1 mm and 1.3 mm, respectively). The data were in good agreement with a power law fit for J vs. Δa. The AZ91D samples had unstable crack extension, with a flat R-curve and a critical fracture energy Jc of ∼ 7.5 kJ m-2. All fractures were by microvoid coalescence, initiated between the primary Mg grains and the brittle Mg17Al12 phase.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
Technical Paper

Optimum Customer Based Specification: Part of DFSS Case Study

2005-04-11
2005-01-1209
Maximizing customer satisfaction is one key factor for marketing success. It is crucial to have engineering specifications reflecting customer expectations. This paper describes the strategy and methodologies used to generate optimum engineering specification in a case study. This study is part of the DFSS project, which focused on electrical delay time prior to engine crank.
Technical Paper

Optimal Mount Selection with Scattered and Bundled Stiffness Rates

2006-04-03
2006-01-0736
The optimal selection of vehicle body and powertrain mounts from “mount libraries” is one of the major undertakings to achieve optimal vehicle dynamics and N&V performance through the reuse of existing mount designs. The great challenges of the process are due to the facts that conventional optimization procedures, either through simulation or DOE, can not be used directly because the stiffness rates of the mounts are scattered and bundled. Sorting out the best through hardware tests is generally unrealistic simply due to the huge number of mount combinations. This paper presents a new approach to the optimal mount selection, and demonstrates through applications that it is efficient and reliable. This approach characterizes a mount by its effective stiffness rate and evaluates its deviation from an associated target. Continuous dummy variables are used to determine the selection targets through conventional processes for performance optimization.
Technical Paper

Obtaining the Coupled Response of Structures from their Mass Loaded Forced Response

2004-03-08
2004-01-0759
This paper outlines a newly developed method for predicting the coupled response of structures from their uncoupled forced responses without having to know the forces acting on such structures. It involves computing the forced response of originally uncoupled structures with several mass loadings at a potential coupling point. The response data obtained from such computations is then used to predict the coupled response. The theory for discrete linear systems is outlined in the paper and a numerical example is given to demonstrate the validity, advantages and limitations of the method. The method is primarily devised to obtain coupled response of linear dynamic systems from independent and uncoupled analytical simulations. Its application significantly decreases computation time by reducing the simulation model size and is excellent for “what if” scenarios where a large number of simulations would otherwise be necessary.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Improving a Vehicle Theft Deterrent System's Communication Using Design for Six Sigma (DFSS)

2007-04-16
2007-01-0800
General Motors' vehicles are designed with an engine immobilizer theft deterrent system. An engine immobilizer theft deterrent system only allows starting of the vehicle engine after assuring the key is the correct key. The communication link from the vehicle to the key is a critical interface for the starting of the engine. This communication link must be reliable. The vehicle theft deterrent system's ability to communicate between the vehicle and transponder in the key is measured by the coupling factor. There are a number of physical interfaces that affect the coupling factor. The focus of this work is to understand the physics and critical design parameters involved in achieving optimal coupling factor to improve the first time quality in future designs. Achieving this objective will lead to designs robust to variances in material and packaging design and result in less testing. The process used in the past on these systems was the Design-Test-Fix approach.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
X