Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Thermal: A Vehicle-Level HVAC/PTC Simulation Tool

2004-03-08
2004-01-1510
This paper describes a vehicle-level simulation model for climate control and powertrain cooling developed and currently utilized at GM. The tool was developed in response to GM's need to speed vehicle development for HVAC and powertrain cooling to meet world-class program execution timing (18 to 24 month vehicle development cycles). At the same time the simulation tool had to complement GM's strategy to move additional engineering responsibility to its HVAC suppliers. This simulation tool called “e-Thermal” was quickly developed and currently is in widespread (global) use across GM. This paper describes GM's objectives and requirements for developing e-Thermal. The structure of the tool and the capabilities of the simulation tool modules (refrigeration, front end airflow, passenger compartment, engine, transmission, Interior air handling …) is introduced. Model data requirements and GM's strategy for acquiring component data are also described.
Technical Paper

Wear Test Method for Developing Plastic Materials for Applications Wherein a Plastic Part is Rotating or Reciprocating Against a Metal Surface

2005-04-11
2005-01-0876
The wear test introduced in this paper can be used to determine and rank PV (pressure time velocity) capability of plastic materials for applications where a plastic part is rotating or reciprocating against a metal surface. It provides an accelerated test method to evaluate the wear performance of plastic materials. A single test can provide tribological information at multiple PV conditions. The tribological information obtained from this method includes coefficient of friction, PV (pressure times velocity) limits, and interface temperature profile. This test is currently used by General Motors Corporation to develop plastic materials for transmission thrust washer and dynamic seal applications. The test is running in two sequences (A & B), capable of a PV range from 50,000 psi-ft/min 500,000 psi-ft/min, under dry conditions. The PV steps in sequence A are combinations of high pressure and low velocity - for applications where high loads are expected, such as thrust washers.
Technical Paper

Volume Morphing to Compensate Stamping Springback

2009-04-20
2009-01-0982
A common occurrence in computer aided design is the need to make changes to an existing CAD model to compensate for shape changes which occur during a manufacturing process. For instance, finite element analysis of die forming or die tryout results may indicate that a stamped panel springs back after the press line operation so that the final shape is different from nominal shape. Springback may be corrected by redesigning the die face so that the stamped panel springs back to the nominal shape. When done manually, this redesign process is often time consuming and expensive. This article presents a computer program, FESHAPE, that reshapes the CAD or finite element mesh models automatically. The method is based on the technique of volume morphing pioneered by Sederberg and Parry [Sederberg 1986] and refined in [Sarraga 2004]. Volume morphing reshapes regions of surfaces or meshes by reshaping volumes containing those regions.
Technical Paper

Vehicle Panel Vibro-Acoustic Behavior and Damping

2003-05-05
2003-01-1406
Damping treatments are widely used in passenger vehicles, but the knowledge of damping treatments is often fragmentary in the industry. In this study, vibro-acoustics behavior of a set of vehicle floor and dash panels with various types of damping treatments was investigated. Sound transmission loss, sound radiation efficiency as well as damping loss factor were measured. The damping treatments ranged from laminated steel construction (thin viscoelastic layer) and doubler plate construction (thick viscoelastic layer) to less structural “bake-on” damping and self-adhesive aluminum foil-backed damping treatments. In addition, the bare vehicle panels were tested as a baseline and the fully carpeted floor panel was tested as a reference. The test data were then examined together with analytical modeling of some of the test configurations. As expected, the study found that damping treatments add more than damping. They also add mass and change body panel stiffness.
Technical Paper

Vehicle Component Fatigue Analysis Considering Largest Overall Loop for Multiple Surfaces

2006-04-03
2006-01-0979
In the automotive industry, vehicle durability analysis is based on test schedule encompassing multiple road surfaces (events) including rough roads, potholes, etc. Traditionally, in the Computer Aided Engineering (CAE) world, road load data for various road surfaces are measured/predicted and fatigue life is predicted for each individual road surface. Fatigue life for the complete test schedule is then calculated with Miner’s rule by summing fatigue damage for each road surface with an appropriate number of repetitions. A major pitfall of this approach is that it does not consider the effect of the largest rainflow range across the entire test schedule. The method described in this paper was developed to perform fatigue analysis of structures subjected to diverse road surfaces and also consider the case in which the maximum overall peak and minimum overall valley do not occur over the same road surface.
Technical Paper

Use of Repeated Crash-Tests to Determine Local Longitudinal and Shear Stiffness of the Vehicle Front with Crush

1999-03-01
1999-01-0637
Crash-test-data on local longitudinal and shear stiffness of the vehicle front is needed to estimate impact severity from car deformation in offset or pole impacts, and to predict vehicle acceleration and compartment intrusion in car-to-car crashes. Repeated full frontal crash-tests were carried out with a load-cell barrier to determine the local longitudinal stiffness with increasing crush. Repeated off-set tests were run to determine shear stiffness. Two single high-speed tests (full frontal and offset) were carried out and compared to the repeated tests to determine the rate sensitivity of the front structure. Four repetitions at 33.4 km/h provided equivalent energy absorption to a single 66.7 km/h test, when rebound was considered. Power-train inertial effects were estimated from highspeed tests with and without power-train. Speed effects averaged 2% per [m/s] for crush up to power-train impact, and post-crash measurements were a reasonable estimate of front-structure stiffness.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-04-16
2007-01-1721
Managing (minimizing and optimizing) the total mass of a vehicle is recognized as a critical task during the development of a new vehicle, as well as throughout its production lifecycle. This paper summarizes a literature review of, and investigation into, the strategies, methods and best practices for achieving low total mass in new vehicle programs, and/or mass reductions in existing production vehicle programs. Empirical and quantitative data and examples from the automotive manufacturers and suppliers are also provided in support of the material presented.
Technical Paper

Software Testing Strategies for Model-Based Chassis Control Systems

2007-04-16
2007-01-0505
Model-based design and development is emerging in the automotive industry, largely revealing its popularity in chassis control systems [1]. Although it is an efficient and accepted design tool for chassis systems, proper processes and strategies need to be in place to ensure the integrity and correctness of the production software. This paper describes software testing strategies for complex chassis control systems in a model-based environment. In detail, it highlights various testing methods for different phases, such as unit testing and integration testing. It will also address issues and challenges that were faced with each method and propose possible solutions.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
Technical Paper

Sensitivity Study of Staircase Fatigue Tests Using Monte Carlo Simulation

2005-04-11
2005-01-0803
The staircase fatigue test method is a well-established, but poorly understood probe for determining fatigue strength mean and standard deviation. The sensitivity of results to underlying distributions was studied using Monte Carlo simulation by repeatedly sampling known distributions of hypothetical fatigue strength data with the staircase test method. In this paper, the effects of the underlying distribution on staircase test results are presented with emphasis on original normal, lognormal, Weibull and bimodal data. The results indicate that the mean fatigue strength determined by the staircase testing protocol is largely unaffected by the underlying distribution, but the standard deviation is not. Suggestions for conducting staircase tests are provided.
Technical Paper

SEA Modeling of A Vehicle Door System

2005-05-16
2005-01-2427
The Door system is one of the major paths for vehicle interior noise under a variety of load conditions. In this paper we consider the elements of the door lower (excluding glass) in terms of noise transmission. Passenger car doors are comprised of the outer skin, door cavity, door inner sheet metal, vapor barrier, and interior trim. Statistical Energy Analysis (SEA) models must effectively describe these components in terms of their acoustic properties and capture the dominant behaviors relative to the overall door system. In addition, the models must interface seamlessly with existing vehicle level SEA models. SEA modeling techniques for the door components are discussed with door STL testing and model correlation results.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

Rollover Crash Tests-The Influence of Roof Strength on Injury Mechanics

1985-12-01
851734
Eight lateral dolly rollover tests were conducted on 1983 Chevrolet Malibusata nominal speed of 51.5 km/h (32 mi/h). Four of the vehicles had rollcages, and four had standard production roofs. Unrestrained outboard front GM Hybrid ill dummies with head and neck transducers were used. Numerous cameras documented the vehicle and dummy movements. Detailed vehicle kinematics data allowed quantitative analysis of the conditions for head and neck loads. For both roof structures, the dummies moved upward and outward from their seats due to rotation and acceleration of the vehicle. High head/neck loads were measured when the head contacted a part of the car experiencing a large change in velocity, often that part of the car which struck the ground. The results of this work indicate that roof strength is not an important factor in the mechanics of head/neck injuries in rollover collisions for unrestrained occupants.
Technical Paper

Robust Design of Glass Run-Channel Seal

2004-03-08
2004-01-1687
Glass run-channel seals are located between DIW (Door in White) and window glass. They are designed to allow window glass to move smoothly while other two major requirements are met; (1) Provide insulation to water leakage and noise, and (2) Stabilize the window glass during glass movement, door slamming and vehicle operation. For a robust glass guidance system, it is critical to minimize the variation of seal compression force. In addition, it is desired to maintain a low seal compression force, which meets the minimum requirement for insulating water leakage/noise and stabilizing the window glass, for enhancing the durability of glass guidance system. In this paper, a robust synthesis and design concepts on the glass run-channel seal is presented. The developed concept is demonstrated with test data.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Relationship of Crash Test Procedures to Vehicle Compatibility

2003-03-03
2003-01-0900
This paper examines the effect that test barriers currently used for frontal and side impact tests have had on collision compatibility between different-sized vehicles. The peak force levels generated by the vehicles’ front structures are one of the significant factors in determining vehicle compatibility. It is shown from principles of mechanics that the use of fixed barriers as a test device may lead to higher force levels for front ends of larger vehicles and thus increase the incompatibility between large and small vehicles. Review of data from various sources supports this conclusion that the peak force levels of vehicles’ front ends have increased in proportion to their test mass. Available crash data is also examined for a relationship between NCAP ratings of vehicles and the likelihood of serious and fatal injuries to occupants of those vehicles. These data do not show any relationship between the frontal NCAP ratings of vehicles and their rate of serious or fatal injuries.
X