Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Use of Active Rear Steering to Achieve Desired Vehicle Transient Lateral Dynamics

2018-04-03
2018-01-0565
This paper studies the use of active rear steering (4-wheel steering) to change the transient lateral dynamics and body motion of passenger cars in the stable or linear region of the tires. Rear steering systems have been used for several decades to improve low speed turning maneuverability and high speed stability, and various control strategies have been previously published. With a model-based, feed-forward rear steer control strategy, the lateral transient can be influenced separately from the steady-state steering gain. This lateral transient is influenced by many vehicle parameters, but we will look at the influence of active rear steer and various tire types such as all-season, snow, and summer. This study will explore the ability for a rear steering system to change the lateral transient to a step steer input, compared to the effect of changing tire types.
Technical Paper

Tooling Effects on Edge Stretchability of AHSS in Mechanical Punching

2019-04-02
2019-01-1086
Edge stretchability reduction induced by mechanical trimming is a critical issue in advanced high strength steel applications. In this study, the tooling effects on the trimmed edge damage were evaluated by the specially designed in-plane hole expansion test with the consideration of three punch geometries (flat, conical, and rooftop), three cutting clearances (6%, 14%, and 20%) and two materials grades (DP980 and DP1180). Two distinct fracture initiation modes were identified with different testing configurations, and the occurrence of each fracture mode depends on the tooling configurations and materials grades. Digital Image Correlations (DIC) measurements indicate the materials are subject to different deformation modes and the various stress conditions, which result in different fracture initiation locations.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

Structural Performance Comparison between 980MPa Generation 3 Steel and Press Hardened Steel Applied in the Body-in-White A and B-Pillar Parts

2020-04-14
2020-01-0537
Commercially available Generation 3 (GEN3) advanced high strength steels (AHSS) have inherent capability of replacing press hardened steels (PHS) using cold stamping processes. 980 GEN3 AHSS is a cold stampable steel with 980 MPa minimum tensile strength that exhibits an excellent combination of formability and strength. Hot forming of PHS requires elevated temperatures (> 800°C) to enable complex deep sections. 980 GEN3 AHSS presents similar formability as 590 DP material, allowing engineers to design complex geometries similar to PHS material; however, its cold formability provides implied potential process cost savings in automotive applications. The increase in post-forming yield strength of GEN3 AHSS due to work and bake hardening contributes strongly toward crash performance in energy absorption and intrusion resistance.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Strain Amount and Strain Path Effects on Instrumented Charpy Toughness of Baked Third Generation Advanced High Strength Steels

2021-04-06
2021-01-0266
Third generation advanced high strength steels (AHSS) that rely on the transformation of austenite to martensite have gained growing interest for implementation into vehicle architectures. Previous studies have identified a dependency of the rate of austenite decomposition on the amount of strain and the associated strain path imposed on the sheet. The rate and amount of austenite transformation can impact the work hardening behavior and tensile properties. However, a deeper understanding of the impact on toughness, and thus crash performance, is not fully developed. In this study, the strain path and strain amounts were systematically controlled to understand the associated correlation to impact toughness in the end application condition (strained and baked). Impact toughness was evaluated using an instrumented Charpy machine with a single sheet v-notch sample configuration.
Technical Paper

Springback Prediction and Correlations for Third Generation High Strength Steel

2020-04-14
2020-01-0752
Third generation advanced high strength steels (3GAHSS) are increasingly used in automotive for light weighting and safety body structure components. However, high material strength usually introduces higher springback that affects the dimensional accuracy. The ability to accurately predict springback in simulations is very important to reduce time and cost in stamping tool and process design. In this work, tension and compression tests were performed and the results were implemented to generate Isotropic/Kinematic hardening (I/KH) material models on a 3GAHSS steel with 980 MPa minimum tensile strength. Systematic material model parametric studies and evaluations have been conducted. Case studies from full-scale industrial parts are provided and the predicted springback results are compared to the measured springback data. Key variables affecting the springback prediction accuracy are identified.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

2017-03-28
2017-01-1112
The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Journal Article

Role of Worst-Case Operating Scenario and Component Tolerance in Robust Automotive Electronic Control Module Design

2023-04-11
2023-01-0849
Use of electronic systems in the vehicles is increasing day by day. As Electronic Control Modules (ECMs) become a large part of the vehicle, automotive designers need to take diligent decision of selecting electrical and electronic components. Selecting these components for ECM depends on four major factors: meeting stringent vehicle requirements, performance over the lifespan, robustness/reliability and cost. There is always an urge of reducing the cost of the ECM, but robustness of the controller module must not be compromised. One electrical or electronic component failure or false fault detection not only increases warranty cost but may also stall the vehicle, and interrupts customer’s daily routine creating dissatisfaction. This paper emphasizes on the importance of understanding worst-case operating scenarios considering component tolerances over the operating range, datasheet, and impact of tolerances on performance and fault detection.
Journal Article

Retained Austenite Stability and Impact Performance of Advanced High Strength Steel at Reduced Temperatures

2017-03-28
2017-01-1707
Retained austenite stability to both mechanically induced transformation and athermal transformation is of great importance to the fabrication and in-vehicle performance of automotive advanced high strength steels. Selected cold-rolled advanced high strength steels containing retained austenite with minimum tensile strengths of 980 MPa and 1180 MPa were pre-strained to pre-determined levels under uniaxial tension in the rolling direction and subsequently cooled to temperatures as low as 77 K. Room temperature uniaxial tensile results of pre-strained and cooled steels indicate that retained austenite is stable to athermal transformation to martensite at all tested temperatures and pre-strain levels. To evaluate the combined effects of temperature and pre-strain on impact behavior, stacked Charpy impact testing was conducted on the same 980 MPa minimum tensile strength steel following similar pre-straining in uniaxial tension.
Technical Paper

Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel

2018-04-03
2018-01-0806
Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Multi Body Dynamics Modeling of Launch Shudder in Electric Vehicles

2022-03-29
2022-01-0308
The continued push for faster automotive design cycles while maintaining high product quality requires increasing fidelity in virtual analysis. One vibration disturbance load case that has been targeted for virtual analysis improvement is launch shudder, particularly in electric vehicle (EV) applications. Launch shudder can be caused by halfshaft constant velocity joint (CVJ) excitation of a powertrain mounting resonance. It is heavily dependent on the CVJ friction characteristics, axle torque, dynamic operating angles of the halfshafts, the mounting system of the powertrain and the transfer path of vibration to the occupant’s seat. The need to model these parameters accurately makes a full vehicle, multi body dynamics model a great candidate for this load case. This study introduces an approach to modeling, analysis and applications of launch shudder simulation at General Motors.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Minimizing Disturbance Detection Time in Hydraulic Systems

2020-04-14
2020-01-0263
In a hydraulic system, parameter variation, contamination, and/or operating conditions can lead to instabilities in the pressure response. The resultant erratic pressure profile reduces performance and can lead to hardware damage. Specifically, in a transmission control system, the inability to track pressure commands can result in clutch or variator slip which can cause driveline disturbance and/or hardware damage. A variator is highly sensitive to slip and therefore, it is advantageous to identify such pressure events quickly and take remedial actions. The challenge is to detect the condition in the least amount of time while minimizing false alarms. A Neyman-Pearson and an energy detector (based on auto-correlation) are evaluated for the detection of pressure disturbances. The performance of the detectors is measured in terms of speed of detection and robustness to measurement noise.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
X