Refine Your Search

Topic

Author

Search Results

Technical Paper

Wheels and Tires Assembling Case Study

2014-09-30
2014-36-0253
This paper makes an analysis of problems encountered in assembling components from automotive vehicles. It shows wheel and tires assembling cases of an automaker that applies lean manufacturing concepts in the production process. This study not only makes the analysis from the best way to apply the methodology to seek for the root cause, but also uses methodology to identify containment measures, defining robust solutions capable of preventing the incidence of similar problems. This methodology can be applied to solving problems of any production process, even outside of the automotive industry
Technical Paper

Virtual Simulating of Residual Stresses in Aluminum Wheel Designs

2009-04-20
2009-01-0417
The current study shows interesting results obtained by a new virtual approaching for evaluating the final stresses presented in automotive components during its application in vehicle which suggests product engineers a new tool for measuring the residual stresses in casting. As part of this proposal, an automotive as-cast aluminum wheel belong to current production was evaluated in accordance with data acquired in its manufacturing process. At that step, it was taking into account the real information of casting process parameters and the metallurgic results obtained in laboratorial tests such as, metallographic, chemical and mechanical tests. FEA (Finite Element Analysis) on simulation of wheel loading stress was made regarding those preliminary data obtained in CRSFEA simulation (cast residual stress finite element analysis) as entered parameters.
Technical Paper

Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure

2014-11-04
2014-36-0767
It is known acoustic comfort is a key feature to meet customer expectations for many products. In the current automotive industry, vehicle interior quietness is seen as one of the most important product attributes regarding perceived quality. A quiet interior can be achieved through an appropriate balance of noise sources levels and acoustic materials. However, the choice of the most efficient acoustic content may be challenging under severe cost and mass restraints commonly found in emerging market vehicles. Therefore, it is fundamental to develop efficient materials which will provide high acoustic performance with lower weight and cost. In this paper the fine tuning of the headliner structure is presented as an efficient way to increase acoustic performance. Structures currently employed for this vehicle subsystem are described. Airflow resistance and sound absorption measurements are used to guide development and make precise manufacturing process changes.
Technical Paper

Using Spherical Beamforming to Evaluate Wind Noise Paths

2014-11-04
2014-36-0791
Microphone array based techniques have a growing range of applications in the vehicle development process. This paper evaluates the use of Spherical Beamforming (SB) to investigate the transmission of wind-generated noise into the passenger cabin, as one of the alternative ways to perform in-vehicle troubleshooting and design optimization. On track measurements at dominant wind noise conditions are taken with the spherical microphone array positioned at the front passenger head location. Experimental diligence and careful processing necessary to enable concise conclusions are briefly described. The application of Spherical Harmonics Angularly Resolved Pressure (SHARP) and the Filter-And-Sum (FAS) algorithms is compared. Data analysis variables, run-to-run repeatability and system capability to identify design modifications are studied.
Technical Paper

Use of Seat Cushion Accelerometer as a Tool to Support Vehicle Dynamics Ride Development by the Objective Characterization of Vehicle Ride

2014-09-30
2014-36-0220
The definition of the ride attribute is very difficult because it is part of human perception during driving. For vehicle dynamics work, have details of what is good or what is bad considering driving comfort, usually, induces some controversial opinions. In this work, the use of a single accelerometer is shown as a tool to characterize the basic vehicle vibrational behavior and so support the correlation between human perception and the resulting ride comfort presented. By using PSD theory, it is possible to “see” how the vehicle vibrates and so have a better understanding of where in the vehicle is located a possible issue and how to fix it. In a more advanced point of view is possible to characterize each vehicle with a ride “personality”, this meaning how each brand and model behave and so how vehicle behave to the consumer approve or complain about it..
Technical Paper

The use of Glycerin in engine coolants for tropical countries

2023-02-10
2022-36-0012
Use of glycerin as a base for antifreeze is not a new idea. ASTM International published standards wherein the use of Glycerin within antifreeze and engine coolant products is seen as a feasible alternative. ASTM D7640 covers engine coolant grade glycerin (1, 2, 3 Propanetriol, Glycerol) with 99.5% purity and ASTM D7714 covers the requirements for Glycerin base engine coolants used in automobiles or other light duty service cooling systems. This paper aims to demonstrate the best composition of an Engine coolant Glycerin base designed to be diluted with water at 35%/65% vol/vol in comparison to a conventional Engine Coolant Ethylene Glycol (EG) base also diluted at 35%/65% vol/vol. Experiments were run to define the best amount of Glycerin could replace Ethylene Glycol in Engine Coolant Concentrate formula.
Technical Paper

The Use of Piezoelectric Resonators to Enhance Sound Insulation in a Vehicle Panel

2012-11-25
2012-36-0613
The control of noise and vibrations using conventional damping materials is typically associated to mass penalties in a vehicle. A lightweight alternative employs piezoceramic materials connected in series to a resistor and an inductor (R-L circuit) to perform as mechanical vibration absorber, called piezoelectric resonator. In this paper, piezoelectric resonators are designed to attenuate vibration in a vehicle panel. The choice of design parameters, such as correct placement for the piezoelectric patches and the optimal electrical circuit values, is assisted by Finite Element simulation (FE) and theoretical analysis. Measurements of Sound Transmission Loss (STL) and modal analyses are conducted to demonstrate the efficiency of the proposed technique when compared to a conventional damping material.
Technical Paper

Study of Geometric Parameters for Validation and Reduction Effort in Steering System of a Vehicle FSAE

2015-09-22
2015-36-0147
This paper explores the method of modeling and validation the computational tools able to accurately replicate the dynamic behavior of a Formula SAE vehicle. Based on limitations in conducting physical tests, it is possible to mathematically predict the forces and momentum generated on the steering column of the vehicle, minimizing effort and improving driver comfort even before the component physically manufactured. The results in permanent state due technical instrumentations were used in the physical vehicles and compared with other proposals (skid Pad test). As the software simulating the same path, it was possible to adopt values of speed and wheel steering, allowing compare the dynamics of the vehicle, through the signals from other sensors installed in the data acquisition system, validating the behavior of the models presented in permanent state. Other aspects were studied to understand vehicle behavior concerning lateral stability and steering behavior.
Technical Paper

Strategies and Proposals to Minimize Squeaks and Rattles - Strong Customers Enthusiasm Improvement Program

2002-11-19
2002-01-3561
According to several customer perception survey, Squeak and Rattle (S&R) is among the top most annoying defects. Consequently, GMB engineering design, development and validation process must be continuously improved and consistently applied to all platforms to guarantee that all products are free from squeaks and rattles. This paper introduces those concepts and discusses some strategies to eliminate or minimize S&R. Concepts and tests results are commented. Finally, the challenge in detection and analysis of S&R is discussed. Objective and subjective evaluation methodologies are being developed and suppliers training and integration have been improved
Technical Paper

Springback: How to Improve its Early Prediction Instead of Late Stamping Dies Rework

2012-10-02
2012-36-0373
The globalization, rivalry and the technologies have changed the auto industry in a battlefield, where companies are fighting for quality, reliability, the reduction of development cycle and also cost. The manufacturing process of car body is the major responsible for time consumption, labor and investment. One of the bottleneck solutions is to use computational simulations during design phase in order to minimize the reworks. The car body is composed by several stamped parts, and its design requires a series of parallel activities, and one of the fundamental information is the accurate magnitude of spring back distortions, but due to the complexity of the phenomenon, the results are not so accurate as desired. The explored literatures are recommending numeric methods to simulate material's behavior and also the spring back phenomenon.
Technical Paper

Reliability comparison between Latin America and African markets of a sub-compact platform

2008-10-07
2008-36-0010
Since the globalization, the automotive competition is growing every day, and automotive products (vehicles and components) are often developed in one country though it's made, used and applied in other markets. The operating conditions such as height, climate, topography, customer perception and other variables are often different from one market to another and could influence on the products reliability. If the market operating conditions are not considered in the vehicle development phase, the product may not fully perform its intended function over useful life period, and also may experience an excessive level of field complaints and/or failure modes specific to those markets and also damage the image of the brand.
Technical Paper

OVERVIEW OF AUTOMOTIVE COMPONENT FAILURES

2000-12-01
2000-01-3231
The present work gives an overview of the current situation of failures that may occur in automotive components, showing their distribution in the vehicle and the causes that make them occur, trying to emphasize the different materials which are used in the manufacturing of these components. This work is a technical approach strictly supported by an engineering concept which aims to discuss the different factors which contribute to cause premature failures of automotive components, prior to their utilization in the field or when they are exposed to the most variable conditions of use. One of the most important objectives of this study is to call the attention of design engineers, research engineers and manufacturing people to the importance of the components integrity which shall be taken into primary consideration in the design phase as well as in the specification of the material and process of manufacturing.
Technical Paper

Modeling Automotive Assembly Lines with Generalized Stochastic Petri Nets and Markov Decision Processes with Imprecise Probabilities

2008-10-07
2008-36-0143
This paper proposes a methodology for automotive manufacturing lines scheduling. This methodology is based on generalized stochastic Petri Nets and Markov decision processes with imprecise probabilities. The usual generalized stochastic Petri Nets is extended by allowing imprecision about probabilities to be explicitly represented and by human task time graph of different products to be attached. Once the system is modeled using this tool and its extensions, we translate the resulting models into Markov decision processes with imprecise probabilities, in order to compute optimal policies that will result in the line scheduling. This paper introduces an algorithm that performs this translation.
Technical Paper

Methodology for virtual analysis of dynamic behavior for tubes and flexible hoses associated with suspension kinematics

2024-01-08
2023-36-0009
Nowadays the automotive market is reducing product development time and launching more technological vehicles, always focusing on having even more safety with better customer experience which generates big competitiveness and requires more accurate and faster development, the virtual simulations make it possible to meet this new reality with a high confidence level. This work comprises the validation of a methodology to analyze the design confidence level for flexibles associated with suspension kinematics. To validate the methodology, the scanned physical model was compared with the virtual simulations using the Simcenter 3D Flexible Pipe software. As inputs data for simulation, it is used geometrical, physical, and chemical information. Through the suspension kinematics study was establish possible movement situations to obtain the flexibles deformations attending to all suspension positions.
Technical Paper

Methodology for the Analysis of Virtual Deformation of Flexible Elements Associated with the Engine Displacement

2015-09-22
2015-36-0171
Through computational dynamic simulations is possible to achieve high reliability index in the development of automotive components, thereby enabling the reduction of cost and time of a product development with considerable gain in quality. This work suggests the validation of a methodology for simulation where is possible to improve the confidence level for design flexible components, such Heater and Cooling hoses that are under dynamic engine action, in relation to the physical model. Known the difficulty in predicting non-linear mathematical relationship deformation under effect of forces and moments, was established a study based on experimental measurements where were used as input parameters to simulate the dynamic behavior of flexible components, in this case, coolant hoses.
Technical Paper

Methodology for Virtual Analysis of Dynamic Behavior of Flexible Tubes and Hoses Associated with Engine Displacement

2024-01-08
2023-36-0010
Through virtual dynamic simulations it is possible to gain quality, safety, reduce cost and development time. Eliminating prototypes components to avoid future problems with package and early degradation of automotive components. This article has the objective validate the simulation methodology linked with flexible tube and hoses that are under engine displacement action to increase the confidence level of the design. The methodology validation consists in compare scanned physical model and virtual simulation models. Using Simcenter 3D Flexible Pipe software as study base. As input parameters it was used geometrical, physical, and chemical data for the virtual model. Finally, the environment can apply the dynamic movement of the powertrain set in the validation of the package and the evaluated component.
Technical Paper

Materials Selection for Biodiesel Application Wiring Harness Insulation Materials Testing

2017-11-07
2017-36-0159
The development of fuel systems components are becoming challenging with the increasing use of Biofuels like Biodiesels and Ethanol around the world. Biodiesels are one of the most challenging fuels, once they can have multiple sources, which influences its characteristics, mainly the oxidization stability and peroxide levels. As the fuel characteristics changes along the time, the correct materials selection during the development phase is very important for the fuel system performance during the vehicle lifetime. One of the components most affected by the Biodiesel is the in tank fuel pump system. During the vehicle lifetime, it is exposed to all sorts of fuel and its contaminants and exposed to system stress factors like temperature and voltage variation. The wires insulation in the fuel pump systems are one of the most affected components.
Technical Paper

Loads Reduction on PWT Mounts System Applying “Frequency Sweep Virtual Analysis” to Identify Resonance Mode

2015-09-22
2015-36-0451
This Paper presents the “Frequency Sweep Virtual Analysis” as a tool to help to define the best powertrain mount concept in order to identify the resonance mode frequency on Powertrain System. Applying this method, we can identify proposals to reduce loads in the Powertrain system due the resonance mode and consequently minimize possibility of exceeding material strength. The “Frequency Sweep Virtual Analysis” drives the powertrain mounts design to avoid running many Road Load Data Acquisitions (RLDA) in a trial-and-error process (Cost reduction and timing savings).
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

2017-11-07
2017-36-0225
The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
X