Refine Your Search

Topic

Search Results

Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Towards Electric Aircraft: Progress under the NASA URETI for Aeropropulsion and Power Technology

2006-11-07
2006-01-3097
The environmental impact of aircraft, specifically in the areas of noise and NOx emissions, has been a growing community concern. Coupled with the increasing cost and diminishing supply of traditional fossil fuels, these concerns have fueled substantial interest in the research and development of alternative power sources for aircraft. In 2003, NASA and the Department of Defense awarded a five year research cooperative agreement to a team of researchers from three different universities to address the design and analysis of revolutionary aeropropulsion technologies.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Technology Assessment of a Supersonic Business Jet

2005-10-03
2005-01-3393
This paper presents a quantitative process to track the progress of technology developments within NASA’s Vehicle Systems Program (VSP) as implemented on a Supersonic Business Jet (SBJ). The process, called the Technology Metric Assessment and Tracking (TMAT) process, accounts for the temporal aspects of technology development programs such that technology portfolio assessments, in the form of technological progress towards VSP sector goals, may be tracked and assessed. Progress tracking of internal research and development programs is an essential element to successful strategic endeavors and justification of the pursuit of capital projects [1].
Technical Paper

Simulation of Traffic at a Four-Way Stop Intersection

1968-02-01
680170
While a number of important attempts have been made to describe characteristics of an intersection purely in mathematical terms, the most fruitful research from a practical standpoint has utilized simulation. This paper reports the results of research in which a four-way stop intersection was simulated on a digital computer. Inputs to the program were based on field studies at three intersections in metropolitan Atlanta using mathematical models and Monte Carlo techniques. Field data were taken with the aid of a spring wound Esterline-Angus 20-pen event recorder and time lapse movies. The simulation model was used to study the effectiveness of the four-way stop at various approach volumes and turning movement combinations. Results of experiments conducted on the simulation model are given by graphs showing the relationship between traffic volumes and average delay, per cent delayed, and average queue length.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Technical Paper

Nonlinear Adaptive Control of Tiltrotor Aircraft Using Neural Networks

1997-10-13
975613
Neural network augmented model inversion control is used to provide a civilian tilt-rotor aircraft with consistent response characteristics throughout its operating envelope, including conversion flight. The implemented response types are Attitude Command Attitude Hold in the longitudinal channel, and Rate Command Attitude Hold about the roll and yaw axes. This article describes the augmentation in the roll channel and the augmentation for the yaw motion including Heading Hold at low airspeeds and automatic Turn Coordination at cruise flight. Conventional methods require extensive gain scheduling with tilt-rotor nacelle angle and airspeed. A control architecture is developed that can alleviate this requirement and thus has the potential to reduce development time. It also facilitates the implementation of desired handling qualities, and permits compensation for partial failures.
Technical Paper

New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology

1998-09-28
985509
This paper critically evaluates the use of Neural Networks (NNs) as metamodels for design applications. The specifics of implementing a NN approach are researched and discussed, including the type and architecture appropriate for design-related tasks, the processes of collecting training and validation data, and training the network, resulting in a sound process, which is described. This approach is then contrasted to the Response Surface Methodology (RSM). As illustrative problems, two equations to be approximated and a real-world problem from a Stability and Controls scenario, where it is desirable to predict the static longitudinal stability for a High Speed Civil Transport (HSCT) at takeoff, are presented. This research examines Response Surface Equations (RSEs) as Taylor series approximations, and explains their high performance as a proven approach to approximate functions that are known to be quadratic or near quadratic in nature.
Technical Paper

Narrow-Band Excitation of Vortex Flows

2015-09-15
2015-01-2572
At high angles of attack, the flow over a swept wing generates counter-rotating vortical features. These features can amplify into a nearly sinusoidal fluctuation of velocity components. The result is excitation of twin-fin buffeting, driven at clearly predictable frequencies, or at nearby lock-in frequencies of the fin structure. This is distinct from the traditional model of fin buffeting as a structural resonant response to broadband, large-amplitude excitation from vortex core bursting. Hot-film anemometry was conducted ahead of the vertical fins of a 1:48 scale model of the F-35B aircraft, in the angle of attack range between 18 and 30 degrees. Auto spectral density functions from these data showed a sharp spectral peak in the flow ahead of the fins for angles of attack between 20 and 28 degrees. Small fences placed on the top surface of the wing eliminated the spectral peak, leaving only a broadband turbulent spectrum.
Technical Paper

Methodology for the Parametric Structural Conceptual Design of Hypersonic Vehicles

2000-10-10
2000-01-5618
The design of hypersonic vehicles is influenced by tightly coupled interactions between aerodynamics, propulsion, and structures. Therefore, in the conceptual design phases, the identification and mitigation of potential problem areas and disciplinary interrelations are critical. Although the multidisciplinary character of hypersonic designs is well known, research in hypersonics is primarily focused on the isolated disciplines with side notes on the interactions. The designer has to integrate all the disciplinary information and create a successful system. This integration is a tedious and elaborate process involving time-consuming iterations. This paper proposes a new approach and entails the creation of Response Surface Equations from the various constituent disciplines considered. This method allows to quickly assess the implication of design decisions at the top level using the multiple disciplinary meta-models.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

MODELING AND CONTROL OF TRANSIENT ENGINE CONDITIONS

2001-10-01
2001-01-3231
In gasoline direct injection engines, fuel is injected into the port walls and the valve. During the engine startup cycle, the temperature of these parts is not adequate to evaporate all the fuel that impacts the walls. As a result, a fraction of the injected fuel does not contribute to the combustion cycle. This fraction forms fuel puddles (wall-wetting) and a portion of it passes to the crankcase. The efficiency of the engine during the startup cycle is decreased and hydrocarbon emissions increased. It is obvious that a control strategy is necessary to minimize the effects of this transient performance of the engine. This paper investigates a modeling framework for the valve, and simulation results validate model performance when compared to available experimental data. The simulation studies lead to a conceptual control design, which is briefly outlined.
Technical Paper

Low Speed Canard-Tip-Vortex Airfoil Interaction

1997-05-01
971469
This paper describes a series of ongoing experiments to capture the details of perpendicular vortex-airfoil interaction. Three test cases explored are: 1) a 21% thick symmetric airfoil at 1.1° angle of attack, 2)a thin flat plate of 2.5% thickness with rounded leading edge, sharp trailing edge and zero angle of attack and 3) A 12% thick symmetric airfoil at zero angle of attack. The tip vortex was generated by a NACA0016 wing at 5° AOA. The strength of the vortex was computed from the velocity profile measured upstream for the first two cases. Pressure measurements on the 21% airfoil were used to quantify the effect of the vortex as a function of its stand-off distance from the airfoil. Vortex trajectories over the airfoils were obtained from laser sheet videography. The vortex motion conforms to potential flow expectations except in regions of pressure gradient and during head-on interaction.
Journal Article

Life-Cycle Environmental Impact of Michelin Tweel® Tire for Passenger Vehicles

2011-04-12
2011-01-0093
Recently Michelin has been developing a new airless, integrated tire and wheel combination called the Tweel® tire. The Tweel tire aims at performance levels beyond those possible with conventional pneumatic technology because of its shear band design, added suspension, and potentially decreased rolling resistance. In this paper, we will focus on the environmental impact of the Tweel tire during its life-cycle from manufacturing, through use and disposal. Since the Tweel tire is currently still in the research phase and is not manufactured and used on a large scale, there are uncertainties with respect to end-of-life scenarios and rolling resistance estimates that will affect the LCA. Nevertheless, some preliminary conclusions of the Tweel tire's environmental performance in comparison to a conventional radial tire can be drawn.
Technical Paper

Laser Ignition of Multi-Injection Gasoline Sprays

2011-04-12
2011-01-0659
Laser plasma ignition has been pursued by engine researchers as an alternative to electric spark-ignition systems, potentially offering benefits by avoiding quenching surfaces and extending breakdown limits at higher boost pressure and lower equivalence ratio. For this study, we demonstrate another potential benefit: the ability to control the timing of ignition with short, nanosecond pulses, thereby optimizing the type of mixture that burns in rapidly changing, stratified fuel-air mixtures. We study laser ignition at various timings during single and double injections at simulated gasoline engine conditions within a controlled, high-temperature, high-pressure vessel. Laser ignition is accomplished with a single low-energy (10 mJ), short duration (8 ns) Nd:YAG laser beam that is tightly focused (0.015 mm average measured 1/e₂ diameter) at a typical GDI spark plug location.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
X