Refine Your Search

Topic

Search Results

Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Technical Paper

The Implementation of a Conceptual Aerospace Systems Design and Analysis Toolkit

1999-10-19
1999-01-5639
The Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) provides a baseline assessment capability for the Air Force Research Laboratory. The historical development of CASDAT is of benefit to the design research community because considerable effort was expended in the classification of the analysis tools. Its implementation proves to also be of importance because of the definition of assessment use cases. As a result, CASDAT is compatible with accepted analysis tools and can be used with state-of-the-art assessment methods, including technology forecasting and probabilistic design.
Technical Paper

Technology Impact Forecasting for a High Speed Civil Transport

1998-09-28
985547
This paper outlines a comprehensive, structured, and robust methodology for decision making in the early phases ofaircraft design. The proposed approach is referred to as the Technology Identification, Evaluation, and Selection (TIES) method. The seven-step process provides the decision maker/designer with an ability to easily assess and trade-off the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations. The method also provides a framework where technically feasible alternatives can be identified with accuracy and speed. This goal is achieved through the use of various probabilistic methods, such as Response Surface Methodology and Monte Carlo Simulations. Furthermore, structured and systematic techniques are utilized to identify possible concepts and evaluation criteria by which comparisons could be made.
Journal Article

Sustainable Manufacturing Analysis using an Activity Based Object Oriented Method

2009-11-10
2009-01-3229
This article begins by describing the need for a new method and tool for performing a sustainability assessment for manufacturing processes and systems. A brief literature survey is done to highlight the major existing methods and tools, their function, and their shortcomings. The article goes on to describe the general approach of the method before describing a computer aided tool that has been developed to implement the method. The article concludes with a walk through of a generic use case that describes where such a method would be useful and how such a tool would be implemented.
Journal Article

Superconducting Machines and Power Systems for Electric-Drive Aeropropulsion

2008-11-11
2008-01-2862
Societal demands of recent years have increasingly pressured the development of greener technologies in all sectors of the nation's transportation infrastructure, including that of civilian aviation. This study explores the concept of electric-drive aeropropulsion, aided by high-temperature superconducting technology, as an enabler for enhancing the environmental characteristics at the air-vehicle level. Potential improvements in the areas of aircraft noise, emissions, and energy efficiency are discussed in the context of supporting the latest strategic goals of leading governmental organizations.
Technical Paper

Split Ring Resonator-based Metamaterial with Total Bandgap for Reducing NVH in Electric Vehicles

2024-04-09
2024-01-2348
We propose a novel Split Ring Resonator (SRR) metamaterial capable of achieving a total (or complete) bandgap in the material’s band structure, thereby reflecting airborne and structure-borne noise in a targeted frequency range. Electric Vehicles (EVs) experience tonal excitation arising from switching frequencies associated with motors and inverters, which can significantly affect occupant perception of vehicle quality. Recently proposed metamaterial designs reflect airborne noise and structure-borne transverse waves over a band of frequencies, but do not address structure-borne longitudinal waves in the same band. To achieve isolation of acoustic, transverse, and longitudinal elastic waves associated with tonal frequencies, we propose a metamaterial super cell with transverse and longitudinal resonant frequencies falling in a total bandgap. We calculate the resonant frequencies and corresponding mode shapes using finite element (FE) modal analysis.
Journal Article

Security Analysis of Android Automotive

2020-04-14
2020-01-1295
In-vehicle infotainment (IVI) platforms are getting increasingly connected. Besides OEM apps and services, the next generation of IVI platforms are expected to offer integration of third-party apps. Under this anticipated business model, vehicular sensor and event data can be collected and shared with selected third-party apps. To accommodate this trend, Google has been pushing towards standardization among proprietary IVI operating systems with their Android Automotive platform which runs natively on the vehicle’s IVI platform. Unlike Android Auto’s limited functionality of display-projecting certain smartphone apps to the IVI screen, Android Automotive will have access to the in-vehicle network (IVN), and will be able to read and share various vehicular sensor data with third-party apps. This increased connectivity opens new business opportunities for both the car manufacturer as well as third-party businesses, but also introduces a new attack surface on the vehicle.
Technical Paper

Scale Similarity Analysis of Internal Combustion Engine Flows—Particle Image Velocimetry and Large-Eddy Simulations

2018-04-03
2018-01-0172
This presentation is an assessment of the turbulence-stress scale-similarity in an IC engine, which is used for modeling subgrid dissipation in LES. Residual stresses and Leonard stresses were computed after applying progressively smaller spatial filters to measured and simulated velocity distributions. The velocity was measured in the TCC-II engine using planar and stereo PIV taken in three different planes and with three different spatial resolutions, thus yielding two and three velocity components, respectively. Comparisons are made between the stresses computed from the measured velocity and stress computed from the LES resolved-scale velocity from an LES simulation. The results present the degree of similarity between the residual stresses and the Leonard stresses at adjacent scales. The specified filters are systematically reduced in size to the resolution limits of the measurements and simulation.
Technical Paper

Real-Time Integrated Economic and Environmental Performance Monitoring of a Production Facility

2001-03-05
2001-01-0625
In this paper, we describe our work and experiences with integrating environmental and economic performance monitoring in a production facility of Interface Flooring Systems, Inc. The objective of the work is to create a ‘dashboard’ that integrates environmental and economic monitoring and assessment of manufacturing processes, and provides engineers and managers an easy to use tool for obtaining valid, comparable assessment results that can be used to direct attention towards necessary changes. To this purpose, we build upon existing and familiar cost management principles, in particular Activity-Based Costing and Management (ABC&ABM), and we extend those into environmental management in order to obtain a combined economic and environmental performance measurement framework (called Activity-Based Cost and Environmental Management).
Journal Article

New Attempts on Vehicle Suspension Systems Modeling and Its Application on Dynamical Load Analysis

2011-09-13
2011-01-2171
Suspension system dynamics can be obtained by various methods and vehicle design has gained great advantages over the dynamics analysis. By employing the new Udwadia-Kalaba equation, we endeavor some attempts on its application to dynamic modeling of vehicle suspension systems. The modeling approach first segments the suspension system into several component subsystems with kinematic constraints at the segment points released. The equations of motion of the unconstrained subsystems are thus easily obtained. Then by applying the second order constraints, the suspension system dynamics is then obtained. The equations are of closed-form. Having the equations obtained, we then show its application on dynamical load analysis. The solutions for the dynamical loads at interested hard points are obtained. We use the double wishbone suspension to show the systematic approach is easy handling.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
Technical Paper

Low Speed Canard-Tip-Vortex Airfoil Interaction

1997-05-01
971469
This paper describes a series of ongoing experiments to capture the details of perpendicular vortex-airfoil interaction. Three test cases explored are: 1) a 21% thick symmetric airfoil at 1.1° angle of attack, 2)a thin flat plate of 2.5% thickness with rounded leading edge, sharp trailing edge and zero angle of attack and 3) A 12% thick symmetric airfoil at zero angle of attack. The tip vortex was generated by a NACA0016 wing at 5° AOA. The strength of the vortex was computed from the velocity profile measured upstream for the first two cases. Pressure measurements on the 21% airfoil were used to quantify the effect of the vortex as a function of its stand-off distance from the airfoil. Vortex trajectories over the airfoils were obtained from laser sheet videography. The vortex motion conforms to potential flow expectations except in regions of pressure gradient and during head-on interaction.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Technical Paper

Laser Ignition of Multi-Injection Gasoline Sprays

2011-04-12
2011-01-0659
Laser plasma ignition has been pursued by engine researchers as an alternative to electric spark-ignition systems, potentially offering benefits by avoiding quenching surfaces and extending breakdown limits at higher boost pressure and lower equivalence ratio. For this study, we demonstrate another potential benefit: the ability to control the timing of ignition with short, nanosecond pulses, thereby optimizing the type of mixture that burns in rapidly changing, stratified fuel-air mixtures. We study laser ignition at various timings during single and double injections at simulated gasoline engine conditions within a controlled, high-temperature, high-pressure vessel. Laser ignition is accomplished with a single low-energy (10 mJ), short duration (8 ns) Nd:YAG laser beam that is tightly focused (0.015 mm average measured 1/e₂ diameter) at a typical GDI spark plug location.
Technical Paper

Influence of Liquid Penetration Metrics on Diesel Spray Model Validation

2013-04-08
2013-01-1102
It is common practice to validate diesel spray models against experimental diesel-spray images based on elastic light scattering, but the metric used to define the liquid boundary in a modeled spray can be physically inconsistent with the liquid boundary detected by light scattering measurements. In particular, spray models typically define liquid penetration based on a liquid mass threshold, while light scattering signal intensities are based on droplet size and volume fraction. These metrics have different response characteristics to changes in ambient conditions and fuel properties. Thus, when spray models are “tuned” or calibrated to match these types of measurements, the predictive capabilities of these models can be compromised. In this work, we compare two different liquid length metrics of an evaporating, non-reacting n-dodecane spray under diesel-like conditions using KIVA-3V.
Technical Paper

Impact of Configuration and Requirements on the Sonic Boom of a Quiet Supersonic Jet

2002-11-05
2002-01-2930
Market forecasts predict a potentially large market for a Quiet Supersonic Business Jet provided that several technical hurdles are overcome prior to fielding such a vehicle. In order to be economically viable, the QSJ must be able to fly at supersonic speeds overland and operate from regional airports in addition to meeting government noise and emission requirements. As a result of these conflicting constraints on the design, the process of selecting a configuration for low sonic boom is a difficult one. Response Surface Methodology along with physics-based analysis tools were used to create an environment in which the sonic boom can be studied as a function of design and mission parameters. Ten disciplinary codes were linked with a sizing and synthesis code by using a commercial wrapper in order to calculate the required responses with the desired level of fidelity.
Technical Paper

Experimental Investigation of Dither Control on Effective Braking Torque

2003-05-05
2003-01-1617
Automotive brake squeal is a problem that has plagued the automotive industry for years. Many noise cancellation techniques have been published. One such technique is the use of an external dither signal, that has been shown to suppress automotive disc brake squeal in experiments with a brake dynamometer, but the effect of this control on the system's braking torque has yet to be determined. By imposing a high frequency disturbance normally into the brake pad, squeal is suppressed. There are many studies that lead to the conclusion of a lower effective braking torque due to the high frequency dither control signal. Under the assumption of Hertzian contact stiffness it has been speculated that the loss in braking torque is due to a lowering of the average normal force. There has also been work done that proves that the application of a dither signal in the normal direction eliminates the ‘stick-slip’ oscillation that causes brake squeal by an effective decrease in the friction force.
Technical Paper

Expanding the Role of the Wind-Driven Manipulator

1997-10-01
975589
The wind-driven dynamic manipulator is a device which uses the wind tunnel freestream energy to drive multi-axis maneuvers of test models. This paper summarizes work performed using the device in several applications and discusses current work on characterizing the aerodynamics of an X-38 vehicle model in pitch-yaw maneuvers. Previous applications in flow visualization, adaptive control and linear-domain parameter identification are now extended to multi-axis inverse force and moment measurement over large ranges of attitude. A pitch-yaw-roll version is operated with active roll to measure forces and moments during maneuvers. A 3-D look-up table generated from direct force calibration allows operation of the manipulator through nonlinear regimes where control wing stall and boom wake-wing interactions are allowed to occur. Hybrid designs combining conventional and wind-driven degrees of freedom are discussed.
X