Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

ɸ-Sensitivity Evaluation of n-Butanol and Iso-Butanol Blends with Surrogate Gasoline

2023-08-28
2023-24-0089
Using renewable fuels is a reliable approach for decarbonization of combustion engines. iso-Butanol and n-butanol are known as longer chain alcohols and have the potential of being used as gasoline substitute or a renewable fraction of gasoline. The combustion behavior of renewable fuels in modern combustion engines and advanced combustion concepts is not well understood yet. Low-temperature combustion (LTC) is a concept that is a basis for some of the low emissions-high efficiency combustion technologies. Fuel ɸ-sensitivity is known as a key factor to be considered for tailoring fuels for these engines. The Lund ɸ-sensitivity method is an empirical test method for evaluation of the ɸ-sensitivity of liquid fuels and evaluate fuel behavior in thermal. iso-Butanol and n-butanol are two alcohols which like other alcohol exhibit nonlinear behavior when blended with (surrogate) gasoline in terms of RON and MON.
Technical Paper

Waste Heat Recovery from Multiple Heat Sources in a HD Truck Diesel Engine Using a Rankine Cycle - A Theoretical Evaluation

2012-09-10
2012-01-1602
Few previous publications investigate the possibility of combining multiple waste heat sources in a combustion engine waste heat recovery system. A waste heat recovery system for a HD truck diesel engine is evaluated for utilizing multiple heat sources found in a conventional HD diesel engine. In this type of engine more than 50% of heat energy goes futile. The majority of the heat energy is lost through engine exhaust and cooling devices such as EGRC (Exhaust gas recirculation cooler), CAC (Charge air cooler) and engine cooling. In this paper, the potential of usable heat recuperation from these devices using thermodynamic analysis was studied, and also an effort is made to recuperate most of the available heat energy that would otherwise be lost. A well-known way of recuperating this heat energy is by employing a Rankine cycle circuit with these devices as heat sources (single loop or dual loop), and thus this study is focused on using a Rankine cycle for the heat recovery system.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Using Vegetable Oils and Animal Fats in Diesel Engines: Chemical Analyses and Engine Tests

2009-04-20
2009-01-0493
There is a growing consensus that there will not be a single alternative to fossil fuels, but rather different fuels, fuel feedstocks, engine types and operating strategies. For stationary diesel engines, straight vegetable oils are an interesting alternative to fossil diesel, because of their potential for lower life cycle greenhouse gas emissions. Using animal fats is also compelling, as it does not imply the cultivation of oil-bearing seeds and related emissions, not to mention the ‘food versus fuel’ debate. The aim of the present work is to correlate engine performance and durability with the properties (composition) of these alternative fuels, to provide a basis from which standards can be formulated for the properties of oils and fats to be used as engine fuel. Tests on different oils and fats are reported.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

The Relevance of Different Fuel Indices to Describe Autoignition Behaviour of Gasoline in Light Duty DICI Engine under PPC Mode

2019-04-02
2019-01-1147
Partially premixed combustion (PPC) with gasoline fuels is a new promising combustion concept for future internal combustion engines. However, many researchers have argued the capabilities of research octane number (RON) and Motor Octane Number (MON) to describe the autoignition behaviour of gasoline fuels in advanced combustion concepts like PPC. The objective of this study is to propose a new method, called PPC number, to characterize the auto ignition quality of gasoline fuels in a light-duty direct injected compression ignition engine under PPC conditions. The experimental investigations were performed on a 4-cylinder Volvo D4 2 litre engine. The ignition delay which was defined as the crank angle degrees between the start of injection (SOI) and start of combustion (SOC) was used to represent the auto ignition quality of a fuel.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Technical Paper

The Effect of Swirl on Spark Assisted Compression Ignition (SACI)

2007-07-23
2007-01-1856
Auto ignition with SI compression ratio can be achieved by retaining hot residuals, replacing some of the fresh charge. In this experimental work it is achieved by running with a negative valve overlap (NVO) trapping hot residuals. The experimental engine is equipped with a pneumatic valve train making it possible to change valve lift, phasing and duration, as well as running with valve deactivation. This makes it possible to start in SI mode, and then by increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate domain between SI and HCCI. The engine is then running in spark assisted HCCI mode, or spark assisted compression ignition (SACI) mode that is an acronym that describes the combustion on the borderline between SI and HCCI. In this study the effect of changing the in-cylinder flow pattern by increased swirl is studied. This is achieved by deactivating one of the two intake valves.
Technical Paper

The Effect of Injection Pressure on the NOx Emission Rates in a Heavy-Duty DICI Engine Running on Methanol.

2017-10-08
2017-01-2194
Heavy-duty direct injection compression ignition (DICI) engine running on methanol is studied at a high compression ratio (CR) of 27. The fuel is injected with a common-rail injector close to the top-dead-center (TDC) with two injection pressures of 800 bar and 1600 bar. Numerical simulations using Reynold Averaged Navier Stokes (RANS), Lagrangian Particle Tracking (LPT), and Well-Stirred-Reactor (WSR) models are employed to investigate local conditions of injection and combustion process to identify the mechanism behind the trend of increasing nitrogen oxides (NOx) emissions at higher injection pressures found in the experiments. It is shown that the numerical simulations successfully replicate the change of ignition delay time and capture variation of NOx emissions.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

System Simulations to Evaluate the Potential Efficiency of Humid Air Motors

2013-10-14
2013-01-2646
In the quest for efficiency improvement in heavy duty truck engines, waste heat recovery could play a valuable role. The evaporative cycle is a waste heat recovery technology aimed at improving efficiency and decreasing emissions. A humid air motor (HAM) uses the waste heat from the exhaust of the engine to humidify the inlet air; this humid air, with higher specific heat, reduces NOx emission to a greater extent [1] [2]. Despite this benefit of emission reduction, the increase or decrease in efficiency of the humid air motor compared to the conventional engine is not discussed in the literature [3] [4] [5]. In this paper, an attempt is made to study the efficiency of the HAM using system model simulations of a 13-liter heavy duty Volvo engine with a humidifier. The commercial software GT-SUITE is used to build the system model and to perform the simulations. The efficiency improvement of the HAM comes from the expansion of the vapor mass flow produced as a result of humidification.
Technical Paper

Study of Fuel Stratification on Spark Assisted Compression Ignition (SACI) Combustion with Ethanol Using High Speed Fuel PLIF

2008-10-06
2008-01-2401
An engine can be run in Homogenous Charge Compression Ignition (HCCI) mode by applying a negative valve overlap, thus trapping hot residuals so as to achieve an auto-ignition temperature. By employing spark assistance, the engine can be operated in what is here called Spark Assisted Compression Ignition (SACI) with ethanol as fuel. The influence of fuel stratification by means of port fuel injection as well as in combination with direct injection was investigated. A high-speed multi-YAG laser system and a framing camera were utilized to capture planar laser-induced fluorescence (PLIF) images of the fuel distribution. The charge homogeneity in terms of fuel distribution was evaluated using a homogeneity index calculated from the PLIF images. The homogeneity index showed a higher stratification for increased proportions of direct-injected fuel. It was found that charge stratification could be achieved through port fuel injection in a swirling combustion system.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Spray Parameter Comparison between Diesel and Vegetable Oils for Non-Evaporating Conditions

2012-04-16
2012-01-0461
The internal combustion engine with compression ignition is still the most important power plant for heavy duty transport, railway transport, marine applications and generator sets. Fuel cost and emission regulations drive manufacturers to switch to alternative fuels. The understanding and prediction of these fuels in the spray and combustion process will be very important for these issues. In the past, lot of research was done for conventional diesel fuel by optically analyzing both spray and combustion. However comparison between different groups is difficult since qualitative results and accuracies are depending in the used definitions and methods. The goal of present research is to verify the behavior pure oils compared to more standard fuels while paying lot of attention to the interpretation of the measurement results.
X