Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Performance of WPA Conductivity Sensor During Two-Phase Fluid Flow in Microgravity

2003-07-07
2003-01-2693
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two- phase fluid flow (gas/liquid) in microgravity. The source for this sensitivity is the fact that free gas will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in 1-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plane (KC-135) to measure the offset, which was determined to range between 0 and 50%. This range approximates the offset experienced in 1-g gas sensitivity testing.
Technical Paper

Liquid Cooling Garment Adaptation to Enhance Surgical Outcomes

2003-07-07
2003-01-2339
Hypothermia is a well documented problem for surgical patients and is historically addressed by the use of a variety of warming aids and devices applied to the patient before, during, and after surgery. Their effectiveness is limited in many surgeries by practical constraints of surgical access, and hypothermia remains a significant concern. Increasing the temperature of the operating room has been proposed as an alternative solution. However, operating room temperatures must be cool enough to limit thermal stress on the surgical team despite the heat transport barriers imposed by protective sterile garments. Space technology in the form of the liquid cooling garment worn by EVA astronauts answers this need. Hamilton Sundstrand Space Systems International (HSSSI) has been working with Hartford Hospital to adapt liquid cooling garment technology for use by surgical teams in order to allow them to work comfortably in warmer operating room environments.
Technical Paper

Investigation of Extravehicular Activity Requirements and Techniques at an Arctic Mars Analog Field Science Base

2001-07-09
2001-01-2199
Designing an EVA system for Mars’s exploration will require a thorough understanding of the mission. Data are available from NASA mission studies, preliminary EVA requirements document, and Apollo program experience. However, additional relevant field experience is required to complete the picture. NASA has addressed this through field tests using prototype EVA equipment and field science programs like the Haughton Mars Project on Devon Island. There, a group of scientists conducts scientific exploration in and around an impact crater in a polar desert similar to expected exploration sites on Mars. Hamilton Sundstrand Space Systems Intl. (HSSSI) EVA system engineers participated in the summer 2000 field research program to gain firsthand knowledge of field science activities. By using a Mars EVA system mockup, they were also able to conduct experiments on EVA system impacts on field science tasks. This field experience and some of its results are described in this paper.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Development, Testing, and Packaging of a Redundant Regenerable Carbon Dioxide Removal System (RRCRS)

2002-07-15
2002-01-2530
Enhancements to the Regenerable Carbon Dioxide Removal System (RCRS) have undergone full-scale, pre-prototype development and testing to demonstrate a redundant system within the volume allotted for the RCRS on the Space Shuttle Orbiter. The concept for a Redundant Regenerable Carbon Dioxide Removal System (RRCRS) utilizes the existing canister of the RCRS, but partitions it into two, independent, two-bed systems. This partitioning allows for two, fully capable RCRS units to be packaged within the original volume, thus reducing stowage volume and launch weight when compared to the flight RCRS plus the backup LiOH system. This paper presents the results of development and testing of a full-scale, pre-prototype RRCRS and includes an overview of the design concept for a redundant system that can be packaged within the existing envelope.
Technical Paper

Development of a Rotary Separator Accumulator for Use on the International Space Station

2002-07-15
2002-01-2360
A Rotary Separator/Accumulator (RSA) has been developed to function as a phase separator and accumulator in the Oxygen Generator Assembly (OGA) in the microgravity environment of the International Space Station. The RSA design utilizes a fixed housing with rotating disks to create a centrifugal force field to separate hydrogen gas from water. The volume within the assembly is utilized to act as an accumulator for the OGA. During the development of the RSA, design refinements were made to meet the changing system operating requirements. Two proof of concept (POC) units and a “flight-like” development unit were fabricated and tested as system requirements evolved. Testing of the first POC unit demonstrated that a combined rotary separator and accumulator was feasible and showed areas where improvements could be made. The second POC unit incorporated a fifty percent volume increase to accommodate changing system requirements and geometry changes to help reduce power consumption.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
X