Refine Your Search

Topic

Search Results

Technical Paper

Vibration Control of an Active Seat Suspension System Integrated Pregnant Woman Body Model

2019-04-02
2019-01-0172
Proportional-integral-derivative (PID) controller is effective, popular and cost effective for a lot of scientific and engineering applications. In this paper, PID and fuzzy-self-tuning PID (FSTPID) controllers are applied to improve the performance of an active seat suspension system to enhance the pregnant woman comfort. The equations of motion of thirteen-degrees-of-freedom (13-DOF) active seat suspension system incorporating pregnant woman body model are derived and simulated. PID gains are tuned and estimated using genetic algorithm (GA) to formulate GA PID controller. In FSTPID, fuzzy logic technique is used to tune PID controller gains by selecting appropriate fuzzy rules using Matlab/Simulink software. Both controlled active seat suspension systems are compared with a passive seat suspension. Suspension performance is evaluated under bump and random road excitations in order to verify the success of the proposed controllers.
Technical Paper

Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach

2020-04-14
2020-01-1082
In this paper, a nonlinear semi-active vehicle suspension system using MR fluid dampers is investigated to enhance ride comfort and vehicle stability. Fuzzy logic and fuzzy self-tuning PID control techniques are applied as system controllers to compute desired front and rear damping forces in conjunction with a Signum function method damper controller to assess force track-ability of system controllers. The suggested fuzzy self-tuning PID operates fuzzy system as a PID gains tuner to mitigate the vehicle vibration levels and achieve excellent performance related to ride comfort and vehicle stability. The equations of motion of four-degrees-of-freedom semi-active half-vehicle suspension system incorporating MR dampers are derived and simulated using Matlab/Simulink software.
Technical Paper

Vibration Control of MR-Damped Half Truck Suspension System Using Proportional Integral Derivative Controller Tuned by Ant Colony Optimization

2024-04-09
2024-01-2289
Proportional integral derivative (PID) control technique is a famous and cost-effective control strategy, in real implementation, applied in various engineering applications. Also, the ant colony optimization (ACO) algorithm is extensively applied in various industrial problems. This paper addresses the usage of the ACO algorithm to tune the PID controller gains for a semi-active heavy vehicle suspension system integrated with cabin and seat. The magnetorheological (MR) damper is used in main suspension as a semi-active device to enhance the ride comfort and vehicle stability. The proposed semi-active suspension consists of a system controller that calculate the desired damping force using a PID controller tuned using ACO, and a continuous state damper controller that predict the input voltage that is required to track the desired damping force.
Technical Paper

Vibration Control of Active Vehicle Suspension System Using Optimized Fuzzy-PID

2018-04-03
2018-01-1402
In this paper, a fuzzy-PID controller is applied in a half vehicle active suspension system to enhance vibration levels of vehicle chassis and passenger seat. The fuzzy-PID controller consists of fuzzy and PID connecting in a series manner, the fuzzy output is considered as the PID input. Genetic Algorithm (GA) is selected to tune controller parameters to obtain optimal values that minimize the objective function. The equations of motion of five-degrees-of-freedom active half-vehicle suspension system are derived and simulated using Matlab/Simulink software. Double bumps and random road excitations are used to study the performance of suspension systems including bounce and pitch motion. The performance of the active suspension system using optimized fuzzy-PID controller is compared with conventional passive to show the efficiency of the proposed active suspension system.
Technical Paper

Vehicle Alternator Electromagnetic Noise Characteristics Determination

2009-05-19
2009-01-2188
In the design of recreational vehicle alternators, a particular challenge arises from marketing and engineering teams' desire to ensure that their products meet “best in class” sound quality characteristics. Furthermore, it is desirable to know these characteristics in measurable engineering terms in the product design stage, preferably before prototypes are built and tested. However, the aim of this paper is to investigate experimentally the electromagnetic sound quality characteristics of a vehicle alternator with the view of determination. For this reason, a special test rig was designed to simulate the alternator electromagnetic noise source. The results indicate that significant information can be obtained for this source. This can be an effective way to control this generated noise and consequently improve the vehicle alternator sound quality and look promising.
Technical Paper

Studying the Effect of Pad Contact Surface on the Frictional Behavior and Acoustic Noise Response for Heavy Duty Vehicle Brakes Using FAST Machine

2006-09-12
2006-01-3131
The influence of the pad contact surface deformation for vehicle brakes on its frictional behavior and friction induced noise is presented in this paper. Friction composite samples of organic binder-type brake pad have been curried out at 17 MPa and 180 °C for heavy-duty applications. However, samples with different surface shapes (solid, drilled and grooved) have been formed and tested tribologically to satisfy suitable friction coefficient at low noise level. A FAST machine was used to find out the accurate friction response at steady frictional moment. Friction acoustic noise has been carried out on the test machine using the sound pressure level meter. Analyses of the obtained results showed that the feature of the pad material surface has a significant influence on the brake frictional stability and noise emission. The results also confirmed that; adding a groove to the brake lining in heavy-duty vehicles gives a better brake performance and hence it is highly recommended.
Technical Paper

Road Traffic Control by Regulating Street Noise Propagation in an Urban Area

2009-11-02
2009-01-2795
Recently, the control of traffic flow has been proposed using several types of criteria (e.g. minimum-time control, minimum fuel control and so on). Most recently, an environmental noise pollution problem caused by the road traffic is being aggravated more and more by the consolidation and expansion of roadway system particularly in urban areas. However, the objective of this paper is to control road traffic flow by regulating traffic noise propagation in an urban area in Cairo city. The results of traffic noise prediction obtained by trending of the experimental data collecting by systematic noise measurement and the evaluation of the traffic noise which is in close connection with physical parameters of traffic flow and noise propagation characteristics is presented. The analysis of road traffic flow noise control is based on the mixed integer non-linear programming technique, where the optimal control strategy is used.
Technical Paper

Road Humps Design Improvement Using Genetic Algorithms

2009-04-20
2009-01-0466
The number of speed humps (sleeping policemen) has seen a global increase in the last decade. This paper addresses the geometric requirements of these humps using Genetic Algorithms optimization techniques to control the speed, stability, and ride feel of the traversing vehicles. The interaction between road hump profile and the modeled vehicles (passenger and a two-axle truck) are studied with a dynamic model. The shape of the proposed profile is described by numbers of amplitudes of harmonic functions. The extreme acceleration of the drivers’ seats of the vehicles traversing the hump is set as multiobjective function for the optimization process, taking into consideration the road-holding ability represented by the tire lift-off speed. The results show that hump geometry can be improved while fulfilling the requirements of speed control and vehicle dynamic responses.
Technical Paper

Ride Comfort Enhancement of Railway Vehicles Using Magnetorheological Damper

2024-04-09
2024-01-2291
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive.
Technical Paper

Plug-In Hybrid Vehicle Induction Motor Aerodynamic Noise Evaluation

2009-05-19
2009-01-2148
Plug-in hybrid vehicles connect to the power grid while parked so they can operate on electricity from the grid as well as on petroleum-based fuel. This distinguishes them in a fundamental way from the plug-less hybrid vehicles currently produced or planned by auto-marker which rely 100% on the petroleum-based fuel. A plug-in hybrid can reduce emissions. However, the aim of this paper is to investigate experimentally the aerodynamic noise performance of a plug-in hybrid vehicle induction motor with the view of evaluation. For this reason, a special test rig was developed to simulate the motor aerodynamic noise source. The results indicate that significant information can be obtained for this source. This can be an effective way to control this generated noise and consequently reduce the vehicle interior and exterior noises and look promising.
Technical Paper

On the Analysis of Drum Brake Squeal Using Finite Element Methods Technique

2006-10-31
2006-01-3467
Many basic studies were conducted to discover the main reason for squeal occurrence in both disc and drum brake systems. As, it is well-known that the squealed brake system is more effective than the non-squealed brake system and it is also a common discomfort. So, cancellation of the squeal is not preferable, however, elimination of the brake squeal is a favorable. An approach to study the drum brake squeal is presented based mainly on the Finite Element Method (FEM) representation. The brake system model is based also on the model information extracted from finite element models for individual brake components. This finite element method (FEM) was used to predict the mode shape and natural frequency of the brake system after appropriate verification of FEM.
Technical Paper

Investigation of the Interaction between the Vehicle Vertical Vibration and Driveline Torsional Vibration Using A Hydro-Pneumatic Limited Bandwidth Active Suspension System

2021-04-06
2021-01-0700
1 Rear wheel drive vehicles have a long driveline using a propeller shaft with two universal joints. Consequently, in this design usage of universal joints within vehicle driveline is inevitable. However, the angularity of the driveshaft resulting from vertical oscillations of the rear axle causes many torsional and bending fluctuations of the driveline. Unfortunately, most of the previously published research work in this area assume the propeller inclination angle is constant under all operating conditions. As a matter of fact, this assumption is not accurate due to the vehicle body attitudes either in pitch or bounce motions. Where the vehicle vibration due to the suspension flexibility, either passive or active type, exists.
Technical Paper

Interval Lower Singleton Fuzzy Optimal Controller Design of Magnetorheological Seat Suspension Integrated with Semi-Active Vehicle Suspension System

2023-09-22
2023-01-5066
In this paper, semi-active MR main suspension system based on system controller design to minimize pitch motion linked with MR-controlled seat suspension by considering driver’s biodynamics is investigated. According to a fixed footprint tire model, the transmitted tire force is determined. The linear-quadratic Gaussian (LQG) system controller is able to enhance ride comfort by adjusting damping forces based on an evaluation of body vibration from the dynamic responses. The controlled damping forces are tracked by the signum function controllers to evaluate the supply voltages for the front and rear MR dampers. Based on the sprung mass acceleration level and its derivative as the inputs, the optimal type-2 (T-2) fuzzy seat system controller is designed to regulate the controlled seat MR damper force.
Technical Paper

Injection Characteristics of Rapeseed Methyl Ester versus Diesel Fuel in Pump-Line-Nozzle Injection System

2008-06-23
2008-01-1590
The transformation of rapeseed oil into methyl ester through the transestrification process normally produce biodiesel fuel with kinematic viscosity almost double that of the commercial diesel fuel. The bulk modulus of biodiesel is also higher than that for the conventional diesel fuel. In this paper, the effects of the two physical properties on the injection characteristics of Rapeseed Methyl Ester (RME) are discussed. The injection characteristics considered here were namely; nozzle chamber pressure, needle lift, and fuel injection rate. The mutual effects of engine speed and delivery pipe length were also analyzed. A previously developed computer model was used to simulate the injection process of the conventional pump-line-nozzle injection system. An explicit finite difference scheme was adopted to solve the unsteady flow equation within the delivery pipe.
Technical Paper

Influence of Surface Modifications on Vehicle Disc Brake Squeal

2009-06-15
2009-01-1977
Squeal from brakes is a problem in the automotive industry and large efforts are made to understand the squeal tendencies. The approach taken is mainly to change the design of the caliper, fine-tune the brake pad material and finally to trim the introducing shims on the backside of the pads. Despite these efforts still no general solutions exist. To advance the situation, a deeper understanding of the actual source of excitation of the sound in the friction interface is needed. However, in the present investigation the surfaces modifications of brake disc and pad have been tested with respect to the understanding properties. The surfaces modifications are slotted pad material and coated disc. All tests have been made in a brake test stand consisting of a complete front wheel corner of a vehicle. The changes have resulted in a significant understand of the generated noise.
Technical Paper

Evaluation of Semi-Active Vehicle Suspension System Performance Incorporating Magnetorheological Damper Using Optimized Feedback Controller Based on State-Derivative

2024-04-09
2024-01-2288
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system.
Technical Paper

Enhancement of Semi-active Vehicle Suspension System Performance Using Magnetorheological Damper

2022-03-11
2022-01-5018
Vehicle suspension is considered a vital system of modern automotive and necessary to offer an adequate level of ride comfort and roadholding. In the present paper, a fuzzy-based sliding surface (FBSS) controller is designed, as a system controller for the first time, for a semi-active vehicle suspension using a magnetorheological (MR) damper in order to minimize the transmitted unwanted vibrations to the passengers. Therefore, an ideal reference skyhook model is employed to construct the sliding surface, which is the input of fuzzy logic. MR damper is a semi-active device and is controlled indirectly using an external voltage source. So a neural-based damper controller is used to compute the applied voltage to the magnet coil of the MR damper in series with the FBSS system controller. The proposed semi-active controlled quarter-vehicle suspension using an MR damper is solved numerically by Matlab.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

Controller Design for Path Tracking of Autonomous Vehicle Incorporating Four-Wheel Steering System

2022-03-29
2022-01-0299
This research aims to model and assess autonomous vehicle controller while including a four-wheel steering and longitudinal speed control. Such a modeling process simulates human driver behavior with consideration of real vehicle dynamics’ characteristics during standard maneuvers. However, a four-wheel steering control improves vehicle stability and maneuverability as well. A three-degree of freedom bicycle model, lateral deviation, yaw angle, and longitudinal speed is constructed to describe vehicle dynamics’ behavior. Moreover, a comprehensive traction model is implemented which includes an engine, automatic transmission, and non-linear magic formula tire model for simulation of vehicle longitudinal dynamics. A combination of proportional integral derivative (PID) longitudinal controller and fuzzy lateral controller are implemented simultaneously to track the desired vehicle path while minimizing lateral deviation and yaw angle errors.
Technical Paper

Automatic Recognition of Truck Chassis Welding Defects Using Texture Features and Artificial Neural Networks

2019-04-02
2019-01-1119
Welding is an excellent attachment or repair method. The advanced industries such as oil, automotive industries, and other important industries need to rely on reliable welding operations; collapse because of this welding may lead to an excessive cost in money and risk in human life. In the present research, an automatic system has been described to detect, recognize and classify welding defects in radiographic images. Such system uses a texture feature and neural network techniques. Image processing techniques were implemented to help in the image array of weld images and the detection of weld defects. Therefore, a proposed program was build in-house to automatically classify and recognize eleven types of welding defects met in practice.
X