Refine Your Search

Topic

Author

Search Results

Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Research on a DPF Regeneration Burner System for Use when Engine is not in Operation

2019-12-19
2019-01-2237
An on board burner that enables DPF regeneration even when an engine is at standstill has been researched. By employing pre evaporative combustion with a wick burner, miniaturization of the burner system was successfully accomplished as well as stable ignition and combustion. Total heat necessary for DPF regeneration was reduced in comparison to the active DPF regeneration by means of engine control and an oxidation catalyst. Uneven temperature distribution in DPF and excessive temperature rise, which had been recognized as issues in the regeneration of a DPF while engine is at standstill, were solved by increase of combustion air amount and multi-step control of regeneration temperature and reliable regeneration was accomplished.
Technical Paper

Oxidative Deterioration Properties of FAME-Blended Diesel Fuel

2018-04-03
2018-01-0924
The correlation between newly approved EN 15751 and the internal diesel injector deposits (IDID) due to fuel oxidative deterioration has not been made clear. In the present research, the Rancimat method was slightly modified to research the relationship between fuel oxidative deterioration and the deterioration products generated from the fuel. After heating fuel at 120 to 150°C for a set period, insoluble deterioration products (IDID-like substances) were generated and their weights were measured. At the same time, the shifts of the conductivity in trap water were analyzed from a new perspective, and its relationship with the deterioration products was investigated. At 120°C and 130°C, conductivity rising rates after the inflection point (this set of data represents the rate of organic acid generation in the fuel, and we named “Oxidation rate”) exhibited a strong correlation with the quantity of deterioration products.
Technical Paper

Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine

1988-02-01
880109
In this paper, the flow patterns and velocity distributions of coolant flow around cylinder liners of diesel engine are studied by numerical calculation and experimental observation. The experiment is carried out by oil film method and direct observation with a transparent acrylic cylinder liner. The calculation is performed with the 3-dimensional model by FEM for fluid flow. The motion of coolant flow by calculation corresponds with the result by oil film method and direct observation with transparent cylinder liner. The visualization of the 3-dimensional calculation gives a good understanding about motion of coolant flow and pressure distribution in water chamber. This method is applied to improve the coolant flow with the stagnation around cylinder liner. The effect of improved design is confirmed by experiment. That is, there are no stagnations in the flow around cylinder liners.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Noise-Generating Mechanism and Noise Reduction of Reciprocating Air Compressor for Heavy Duty Vehicles

2007-05-15
2007-01-2374
The noise-generating mechanism of a reciprocating air compressor for heavy duty vehicles during idling was investigated. It was elucidated that the gear rattling noise of the air compressor drive gear train caused by the negative value of the air compressor drive torque was a major noise source. To completely suppress the gear rattling phenomenon, a new loading device with an air cylinder that cancels the negative value of the air compressor drive torque was fabricated. When the loading device was worked, the impulsive sound level was reduced to 10 dB(A). It was found that the impulsive sound level during gear rattling is closely related to the difference in gear teeth velocity between the crankshaft gear and the air compressor drive gear, as one of the characteristics that are needed to obtain a guide for carrying out estimations in the calculation simulation.
Technical Paper

Noise Reduction of Diesel Engine for Heavy Duty Vehicles

1989-02-01
890128
Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. Noise reduction measures for the diesel engine can be classified into five categories on the noise radiation block-diagram. These are, reduction of combustion and mechanical forces, deformation and vibration control of cylinder block, vibration control of fastened components, prevention of standing wave and close fitting shields. All noise reduction measures for the diesel engine researched for the purpose of practical use are fully described in this paper.
Technical Paper

Noise Generating Mechanism at Idling for a Four-cylinder In-line Diesel Engine

2003-05-05
2003-01-1720
The separation of combustion noise and mechanical noise from the total noise of a four-cylinder in-line diesel engine at idling was carried out with high accuracy by changing the fuel injection timing. The mechanical noise, which accounts for the major share at 93%, was then separated into noises from the typical mechanical causes, and the valve train was found to be the major noise source. From analysis of the noise generating mechanism for the valve train, it was clarified that the noise was caused mainly by the gear rattling owing to the variation in the camshaft drive torque.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

1987-09-01
871614
In order to reduce particulate and NOx emission from the direct injection diesel engine, most researchers have been expecting the utilization of higher injection pressure and injection rate for improvement of diesel combustion. In the case of pump-line-nozzle system, the injection pipe line is very important with regard to the high injection pressure. Namely, the pipe line must be able to resist not only high pressure but also cavitation erosion. In this paper, the effect of high injection pressure, injection rate and sharp cutting at the end of fuel injection are discussed along with cavitation phenomena on the injection pipe line. And durability tests on the pipe line system under high injection pressure using a test rig are also described. Regarding durability tests, several measures have been taken for the injection pipe. As a result, the authors have found that the best solution for the injection pipe is a composite pipe made with SUS and steel.
Technical Paper

Localization of Parts Production for Trucks: Transfer of Press Parts Production Technology

1989-11-01
891237
Thai Hino Industries, one of Hino Motors Ltd.'s major overseas joint ventures, has been manufacturing trucks since it was founded over 20 years ago. During that time, Hino Motors, in cooperation with the Government of Thailand, has increasingly localized the production of vehicle component parts. Today, calculated by item, 45% of all such parts are produced by Thai Hino Industries and its local suppliers. As a result, Thai Hino Industries has grown into a company which makes significant contributions not only to the automotive industry but to Thailand's industrial sector as a whole. Localization of Thai Hino progressed from the transfer of vehicle assembly know-how, to the establishment of feasible guidelines for parts production localization, then on to the transfer of production engineering know-how for flexible manufacturing systems, and finally to the transfer of production engineering know-how for press dies.
Technical Paper

Load and/or Speed Sensing Power Steering for Medium and Heavy Trucks

1985-12-01
852331
It is preferable that power steering permits “static park” and has a good “road Feel” when running. In order to permit “static park”, a large bore actuation cylinder with high flow pump is required. Such a method, however, has two defects, a loss power for driving a large volume pump and a poor “road feel”. Resolving these problems and achieving the above matters. Hino has developed a load sensing power steering system. This system, which employes two actuation cylinders controlled by means of a unique load sensing valve arrangement, is designed to permit use of only one cylinder for highway speeds and both cylinders during a static park maneuver. When the system is combined with the preceding speed sensing power steering, “static park” is further facilitated and a tasty “road feel” is available in accordance with vehicle speed.
Technical Paper

Investigation of Thermal Fatigue Evaluation Method for Cast Iron

2013-04-08
2013-01-0393
We have developed a new test method in which temperature of cavity lip of a piston alone during engine rotation is reproduced, cavity lip strain is measured. As the results of strain measurement using the test method in a condition that simulates of conventional engines, a strain behavior was out-of-phase. And in a condition that simulates of high-load engines in future, strain behavior was clockwise-diamond cycle. It was found from the result of the test method developed that strain increased on the cavity lip. The fatigue life of the cavity lip was evaluated using the strain measured and isothermal fatigue curves which obtained by the strain controlled isothermal fatigue test. The result of engine durability test has revealed that the developed method was valid for thermal fatigue evaluation of the cavity lip.
Technical Paper

Integrated Internal EGR and Compression Braking System for Hino's E13C Engine

2004-03-08
2004-01-1313
An integrated engine subsystem incorporating Internal Exhaust Gas Recirculation (IEGR) or alternatively referred to as Pulse EGR™ and Compression Release Retarding (CRR) functions has been developed and introduced to production with the new E13C engine from Hino Motors Ltd. This new system provides the nitrous oxide (NOX) reduction benefit of IEGR and the vehicle control and brake saving benefits of CRR in a single integrated package, without the need for increased vehicle cooling capacity or additional components external to the engine. The product is a result of a close cooperation between two companies, Hino Motors Ltd. of Japan and Jacobs Vehicle Systems, Inc. of the U.S.A.
Technical Paper

Hino's Advanced Low-Emission Technologies Developed to Meet Stringent Emissions Standards

2006-04-03
2006-01-0275
Japan's new 2005 long-term emissions regulation was implemented in October 2005. Both NOx and PM emissions standards were reduced to 2 g/kWh and 0.027 g/kWh, which were 40 and 85 percent lower than the 2003 new short-term emissions standards, respectively. These emissions standards are as stringent as the Euro5 standards that are scheduled for implementation in 2008. In addition, the transient-cycle test procedure for emissions compliance, labeled JE05, was introduced to replace the D13-mode steady-state test procedure. This paper describes exhaust emissions reduction technologies developed for Hino's 13-liter heavy-duty diesel engine so that it meets the above standards. A production catalyzed wall-flow DPF was employed to reduce PM emissions in both mass and small particles. NOx emissions were reduced by improving combustion with cooled EGR and without use of a NOx aftertreatment device.
X