Refine Your Search

Topic

Search Results

Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Trends of Future Powertrain Development and the Evolution of Powertrain Control Systems

2004-10-18
2004-21-0063
High fuel efficiency and low emission technologies, such as Direct Injection (DI) gasoline and diesel engines and hybrid powertrains, have been developed to resolve environmental and energy resource issues. The hybrid powertrain system has achieved superior power performance as well as higher system efficiency and is expected to be a core powertrain technology because it is compatible with various power sources including fuel cells. It becomes important to control complicated hybrid systems that consist of not only a powertrain but also vehicle systems such as regenerative braking. Model-based control and calibration enables both control strategy optimization and control system development efficiency improvement.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
Technical Paper

Synchrotron X-Ray Visualization and Simulation for Operating Fuel Cell Diffusion Layers

2017-03-28
2017-01-1188
The key challenge in designing a high power density fuel cell is to reduce oxygen transport loss due to liquid water. However, liquid water transport from catalyst layers to channels under operating conditions is not completely understood. Toyota developed a high resolution space and time liquid water visualization technique using synchrotron x-ray (Spring-8) radiography. In addition, a simulation method was created based on computational fluid dynamics (CFD) to identify the cell performance relationship to water distribution. The relationship among gas diffusion layer (GDL) parameters, water distribution, and fuel cell performance was clarified by combining the techniques Toyota developed.
Journal Article

Study of Oxide Supports for PEFC Catalyst

2017-03-28
2017-01-1179
Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Research in Aluminum Matrix Composites for Improvement in Damping Capacity

2005-04-11
2005-01-1389
We have tried to improve damping capacity of an aluminum alloy by means of dispersing ceramic particles (low damping SiC and high damping NdNbO4) of different sizes and volume fractions in the aluminum alloy by powder metallurgy. It is shown that the damping capacity is increased in every case accompanying an increase of Young's modulus. It is also shown that the intrinsic damping capacity of dispersed particles does not play a role in improving the damping capacity. The increase of the damping capacity seems to be attributed to dislocations breakaway, interaction of fine particles and dislocations, and relaxation of interface between ceramic particles and aluminum matrix.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Journal Article

In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts

2016-04-05
2016-01-1192
Electrode catalyst (platinum) degradation represents a major challenge to the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) in Fuel Cell Vehicles (FCVs). While various mechanisms have been proposed and investigated previously, there is still a need to develop in situ imaging techniques that can characterize and provide direct evidence to confirm the degradation process. In the present study, we report an in situ transmission electron microscopy (TEM) method that enables real time, high-resolution observation of carbon-supported platinum nanoparticles in liquid electrolyte under working conditions. By improving the design of the Micro Electro Mechanical Systems (MEMS) sample holder, the migration and aggregation of neighboring platinum nanoparticles could be visualized consistently and correlated to applied electrode potentials during aging process (i.e., cyclic voltammetry cycles).
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Hybrid Vehicles Lessons Learned and Future Prospects

2006-10-16
2006-21-0027
There exist many environmental and earth resource problems to be solved for the 21st century. Hybridization of both internal combustion powertrains and fuel cell powertrains holds great promise for next generation vehicles. This paper describes the lessons learned during design, development, production and marketing of nearly 700,000 hybrid vehicles to date. We review the evolution of major components with a focus on reducing cost, mass and volume while increasing power and efficiency. We also describe the future prospects for hybrid vehicles.
Technical Paper

Enhancing PtCo Electrode Catalyst Performance for Fuel Cell Vehicle Application

2016-04-05
2016-01-1187
While carbon supported PtCo alloy nanoparticles emerged recently as the new standard catalyst for oxygen reduction reaction in polymer membrane electrolyte fuel cells, further improvement of catalyst performance is still of great importance to its application in fuel cell vehicles. Herein, we report two examples of such efforts, related to the improvements of catalyst preparation and carbon support design, respectively. First, by lowering acid treatment voltage, the effectiveness for the removal of unalloyed Co was enhanced significantly, leading to less Co dissolution during cell operation and about 40% higher catalyst mass activity. It has been also found that the use of nonporous carbon support material promoted mass transfer and resulted in substantial drop of overpotential at high current and low humidity. This result may suggest an effective strategy towards the development of fuel cell systems that operate without additional humidification.
Journal Article

Efficiency Improvement of Boost Converter for Fuel Cell Bus by Silicon Carbide Diodes

2016-04-05
2016-01-1234
The adoption of silicon carbide (SiC) power semiconductors is regarded as a promising means of improving the fuel efficiency of all types of electrically powered vehicles, including plug-in, electric, fuel cell, and hybrid vehicles (PHVs, EVs, FCVs, and HVs). For this reason, adoption in a wide variety of vehicles is currently being studied, including in the fuel cell (FC) boost converter of an FC bus. The FC boost converter controls the output voltage of the FC up to 650 V. In this research, SiC Schottky barrier diodes (SiC-SBDs) were adopted in the upper arm of an FC boost converter. Since the forward voltage (Vf) of SiC-SBDs is smaller than conventional Si-PiN diodes (Si-PiNDs), the conduction loss of SiC-SBDs is correspondingly smaller. Recovery loss can also be reduced by at least 90% compared to Si-PiNDs since the recovery current of SiC-SBDs is substantially smaller.
Technical Paper

Development of the Fuel Cell System in the Mirai FCV

2016-04-05
2016-01-1185
Toyota Motor Corporation (TMC) has been developing fuel cell (FC) system technology since 1992. In 2008 the Toyota "FCHV-adv" was released as part of a demonstration program. It established major improvements in key performance areas such as cold start/drive capability, efficiency, driving range, and durability. However, in order to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs), improvements in performance and further reductions in size and cost were required.In December 2014, Toyota launched the world’s first commercially available fuel cell vehicle (FCV) the "Mirai" powered by the Toyota Fuel Cell System (TFCS). Simplicity, reliability and efficiency have been significantly improved within the Toyota TFCS. As a result, the Mirai has become an attractive vehicle which could lead the way towards full-scale popularization of FCVs.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Technical Paper

Development of In Mold Coating Clear Coat Paint for Carbon Fiber Sheet Molding Compound Roof

2022-03-29
2022-01-0345
Carbon Fiber Reinforced Plastic (CFRP) is used for various products in the aerospace and sports industries due to its superior specific tensile strength and specific rigidity. With increasing attention to Carbon Neutrality (CN) in the world, vehicle electrification and lightweighting are expanding. As a result, the application of CFRP to luxury cars, electric cars, and sports cars, is increasing. For example, CFRP is used on Lexus LC and RC-F, and Toyota 86 GRMN. However, there are two technical concerns. The first is its durability, which caused by CFRP resin characteristic. The second is poor appearance, which is caused by CFRP surface pinholes. In order to secure good durability and surface appearance, CFRP must be pre-treated before painting (putty applied as a filler for plastic surface coverage, followed by surface sanding) and needs multiple painting steps. Current painted CFRP is not suitable for mass production due to this long and complicated process.
Technical Paper

Development of Fuel-Cell Hybrid Bus

2003-03-03
2003-01-0417
In order to improve air quality and to reduce urban noise, Toyota Motor Corporation has developed a fuel cell hybrid bus, FCHV-BUS2, in cooperation with HINO Motors, Ltd. The FCHV-BUS2 is based on a HINO low floor city bus model, and powered by a hydrogen fuel cell hybrid system. Hydrogen is stored in high pressure tanks on the bus roof. Based on the Toyota fuel cell hybrid technology for passenger cars, this fuel cell hybrid bus is equipped with two fuel cell stacks, two traction motors and four secondary batteries, making its vehicle efficiency approximately 1.7 times better than the diesel engine powered bus. The vehicle efficiency is boosted by charging the secondary batteries with regenerated energy while deceleration and by stopping the fuel cell stack(s) power generation during low fuel cell power modes.
X