Refine Your Search

Topic

Author

Search Results

Technical Paper

Weathering of Black Plastics for Automotive Exteriors

2003-03-03
2003-01-1191
Ten mold-in-color black polymers were evaluated for exterior weathering in an attempt to improve the specifications for exterior mold-in-color plastics to meet five year durability for a 95th percentile sunbelt customer. Four different weathering methods were utilized including Arizona exposure, Florida exposure, and Xenon arc exposures per the GMNA and the GM Europe methods. Colorfastness, gloss retention and other material property changes due to weathering were measured and analyzed against two GM durability standards. For the appearance attributes, correlations between actual exposure and accelerated exposure were attempted. Test results before and after polishing were also analyzed. Finally, in addition to comparing the performance of the ten polymers, the four weathering methods are compared and discussed with recommendations for the preferred testing regimen.
Technical Paper

Volumetric Efficiency Improvement of High-Pressure Fuel Pump for Gasoline Direct Injection Engine

2015-04-14
2015-01-1273
A recent trend in high-pressure gasoline pumps is increasing the outlet pressure. One of the most important topics for increasing this pressure is improving volumetric efficiency. Therefore, the purpose of this research is to quantify the breakdown of efficiency loss factors and to suggest a new design for improving volumetric efficiency. Authors developed a method of quantifying the efficiency loss breakdown of high-pressure gasoline pumps by using 1D fluid pressure simulation results and conducting evaluation experiments regarding sensitivity. Authors separated pump movement into three phases; suction, compression, and delivery. Authors then investigated the loss factors in each phase. As a result, authors obtained an equation for predicting the final output volume. The equation consists of a limit output volume and other types of leakage volumes.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Journal Article

Tensile Deformation and Fracture of TRIP590 Steel from Digital Image Correlation

2010-04-12
2010-01-0444
Quasi-static tensile properties of TRIP590 steels from three different manufacturers were investigated using digital image correlation (DIC). The focus was on the post-uniform elongation behavior which can be very different for steels of the same grade owing to different manufacturing processes. Miniature tensile specimens, cut at 0°, 45°, and 90° relative to the rolling direction, were strained to failure in an instrumented tensile stage. True stress-true strain curves were computed from digital strain gages superimposed on digital images captured from one gage section surface during tensile deformation. Microstructural phases in undeformed and fracture specimens were identified with optical microscopy using the color tint etching process. Fracture surface analyses conducted with scanning electron microscopy and energy dispersive spectroscopy were used to investigate microvoids and inclusions in all materials.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

Spray Atomization Study on Multi-Hole Nozzle for Direct Injection Gasoline Engines

2013-04-08
2013-01-1596
We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Simplified Approach for Formability Simulation of Automotive Body Structures

2001-10-16
2001-01-3048
This paper presents a simplified approach for formability simulation of automotive body structural sections in the early design stage of vehicle development process. Plane strain approach is investigated for its applicability and accuracy by comparing the analytical results with the measured results of automotive body side panel. The plane strain approach was tried based on the fact that for a certain section location of a stamped panel, the minor strains are relatively small and negligible compared to the major strains. The state of plane strain can be induced mainly through symmetry and applied boundary conditions. This approach is both cost effective and time saving for analyzing sheet metal formability in early vehicle development stage, since only few sections of the entire panel need be analyzed.
Technical Paper

Recycling Study of Post-Consumer Radiator End Caps

1999-03-01
1999-01-0666
In June 1997, the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC) asked MBA Polymers to conduct a study to determine the technical and economic feasibility of recovering metals and plastics from end-of-life radiator end caps (RECs). The VRP worked with the Institute of Scrap Recycling Industries (ISRI) to obtain samples of RECs from two metal recycling companies, SimsMetal America and Aaron Metals. MBA performed its standard Recyclability Assessment on the materials, which included a detailed density and material characterization study and an actual processing study using its pilot processing line. It was found that the polyamide from RECs could be recovered in reasonably high yield and purity using tight density separations. The recycling of the REC samples used for this study generated about 40% nonferrous metal, 19% mixed ferrous and nonferrous metal and about 20% polyamide flakes.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Planetary Carrier Staking Groove Optimization

2019-01-09
2019-26-0239
Simple planetary gears are widely used in automobile industry due to their compact design and high power density. A simple planetary gear set consists of a Sun gear, Ring gear, Planets and Carrier which houses planet gears. Mounting of planet pinions on carrier is through pins which is supported on needle roller bearings. A process called staking is used to assemble the pinion pins on to the carrier. Pinion pins have a staking region which after assembly expands outward into staking groove on the carrier to prevent axial movement of the pins. Design of the groove plays a vital role for the fixation of planet pins and robustness a carrier. Planetary carrier staking grooves are designed to meet pinion pin retention and strength targets.
Technical Paper

Objective Characterization of Vehicle Brake Feel

1994-03-01
940331
Historically, vehicle brake feel has usually been evaluated in a subjective manner. If an objective measure was used, it was pedal force versus the deceleration rate of the vehicle. Stopping distance is almost always used to characterize vehicle braking performance by the automotive press. This represents limit braking performance, but ignores braking performance under normal driving conditions experienced by customers most of the time. Evaluation of pedal feel by the press is generally limited to subjective adjectives such as “mushy”, “positive”, and “responsive”. A method will be presented, which is being used by General Motors, to translate customer brake feel expectations into objective performance metrics. These metrics are correlated to actual subjective ratings and are used to set objective, measurable requirements for performance.
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

1993-03-01
930326
A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
Technical Paper

Multi-Swirl Type Injector for Port Fuel Injection Gasoline Engines

2014-04-01
2014-01-1436
The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices.
Technical Paper

Multi-Material Topology Optimization for Crashworthiness Using Hybrid Cellular Automata

2019-04-02
2019-01-0826
Structures with multiple materials have now become one of the perceived necessities for automotive industry to address vehicle design requirements such as light-weight, safety, and cost. The objective of this study is to develop a design methodology for multi-material structures accountable for vehicle crash durability. The heuristic topology synthesis approach of Hybrid Cellular Automaton (HCA) framework is implemented to generate multi-material structures with the constraint on the volume fraction of the final design. The HCA framework is integrated with ordered-SIMP (solid isotropic material with penalization) interpolation, artificial material library, as well as statistical analysis of material distribution data to ensure a smooth transition between multiple practical materials during the topology synthesis.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Technical Paper

Gaseous Hydrogen Station Test Apparatus: Verification of Hydrogen Dispenser Performance Utilizing Vehicle Representative Test Cylinders

2005-04-11
2005-01-0002
The paper includes the development steps used in creating a station test apparatus (STA) and a description of the apparatus design. The purpose of this device is to simulate hydrogen vehicle conditions for the verification of gaseous hydrogen refueling station dispenser performance targets and hydrogen quality. This is done at the refueling station/vehicle interface (i.e. the refueling nozzle.) In addition, the device is to serve as a means for testing and developing future advanced fueling algorithms and protocols. The device is to be outfitted with vehicle representative container cylinders and sensors located inside and outside the apparatus to monitor refueling rate, ambient and internal gas temperature, pressure and weight of fuel transferred. Data is to be recorded during refueling and graphed automatically.
Technical Paper

GM's Evolving Epsilon Midsize Car Platform

2005-04-11
2005-01-1028
This paper reviews the history of the General Motor's Epsilon Platform from a Body Structure perspective. From the time that it was conceived in 1996 to the present, the platform has evolved to meet many changing requirements. The focus of this paper will cover basic body requirements such as crash performance, modal requirements, packaging issues, changes for wheelbase and powertrains, mass, different body styles, etc, including the differences between European and US requirements. It will demonstrate that this globally developed platform met all its initial requirements and continued to evolve over time to meet additional changing requirements.
X