Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

2000-03-06
2000-01-0231
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

2001-03-05
2001-01-1259
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Low Carbon Flower Buildup, Low Smoke, and Efficient Diesel Operation with Vegetable Oils by Conversion to Mono-Esters and Blending with Diesel Oil or Alcohols

1984-09-01
841161
The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated D.I. diesel engine, and also to find means to reduce the carbon deposit buildup in vegetable oil combustion. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits were measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. It was found that both of the vegetable oil fuels generated an acceptable engine performance and exhaust gas emission levels for short term operation, but they caused carbon deposit buildups and sticking of piston rings after extended operation.
Technical Paper

Influence of the Molecular Structure of Hydrocarbon Fuels on Diesel Exhaust Emissions

1994-03-01
940676
The influence of the molecular structure of hydrocarbon fuels on soot, SOF, and NOx emissions from a diesel engine was analyzed while ignition delay and other physical fuel properties were kept constant. Mixtures of normal paraffin (n-tetradecane) and iso-paraffin (heptamethylnonane) were used as a base fuel and one of 5 kinds of hydrocarbons including mono-aromatic, di-aromatic, and non-aromatic was added. The aromatic content varied in the range of 0-60 vol % for the mono-aromatic fuels and 0-40 vol % for the di-aromatic fuels. The experimental results showed that regardless of the molecular structure of the fuel, both particulate and NOx emissions increased linearly with the C/H atomic ratio of the fuels under constant ignition lag. The increase in particulate emissions with C/H atomic ratio was caused by increases in dry soot. The SOF, THC, and BSEC were little affected by the C/H atomic ratio and molecular structure of the fuels.
Journal Article

Influence of Fuel Properties on Operational Range and Thermal Efficiency of Premixed Diesel Combustion

2013-10-15
2013-32-9054
The influence of fuel properties on the operational range and the thermal efficiency of premixed diesel combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen concentration with the ordinary diesel fuel is lower than with the primary reference fuels with the similar ignitability but higher volatility.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Improvement of Diesel Combustion and Emissions with Addition of Various Oxygenated Agents to Diesel Fuels

1996-10-01
962115
The effect of eight kinds of oxygenated agents added to diesel fuels on the combustion and emissions was investigated in a DI diesel engine. The results showed significant smoke and particulate suppression without increases in NOx with every oxygenated agent. The emissions decreased linearly with increasing oxygen content in the fuels, almost regardless of the kind of oxygenated agent. The improvement in smoke and particulate emissions with the oxygenated agent addition was more significant for lower volatility fuels. Combustion analysis with the two-dimensional two color method showed that soot concentration in the flame during the combustion process decreased with the addition of the oxygenated agent while the flame temperature distribution was almost unchanged.
Technical Paper

Improvement of Combustion and Emissions in a Dual Fuel Compression Ignition Engine with Natural Gas as the Main Fuel

2015-04-14
2015-01-0863
Dual fuel combustion with premixed natural gas as the main fuel and diesel fuel as the ignition source was investigated in a 0.83 L, single cylinder, DI diesel engine. At low loads, increasing the equivalence ratio of natural gas to around 0.5 with intake throttling makes it possible to reduce the THC and CO emissions as well as to improve the thermal efficiency. At high loads, increasing the boost pressure moderates the combustion, but increases the THC and CO emissions, resulting in deterioration of the thermal efficiency. The EGR is essential to suppress the rapid combustion. As misfiring occurs with a compression ratio of 14.5 and there is excessively rapid combustion with 18.5 compression ratio, 16.5 is a suitable compression ratio.
Technical Paper

Effects of Super Heating of Heavy Fuels on Combustion and Performance in DI Diesel Engines

1986-02-01
860306
This paper is concerned with the effects of temperature of heavy fuels on combustion and engine performance in a naturally aspirated DI diesel engine. Engine performance and exhaust gas emissions were measured for rapeseed oil, B-heavy oil, and diesel fuel at fuel temperatures from 40°C to 400°C. With increased fuel temperature, mainly from improved efficiency of combustion there were significant reductions in the specific energy consumption and smoke emissions. It was found that the improvements were mainly a function of the fuel viscosity, and it was independent of the kind of fuel. The optimum temperature of the fuels with regard to specific energy consumption and smoke emission is about 90°C for diesel fuel, 240°C for B-heavy oil, and 300°C for rapeseed oil. At these temperatures, the viscosities of the fuels show nearly identical value, 0.9 - 3 cst. The optimum viscosity tends to increase slightly with increases in the swirl ratio in the combustion chamber.
Technical Paper

Dual Fuel Diesel Combustion with Premixed Ethanol as the Main Fuel

2014-10-13
2014-01-2687
Dual fuel combustion with premixed ethanol as the main fuel and direct injection of diesel fuel as an ignition source poses problems including large unburned emissions and excessively rapid combustion. In this report the influence of compression ratios, injection timings of diesel fuel, and intake oxygen concentrations was systematically investigated in a modern diesel engine. The combustion process was classified into three stages: the first rapid combustion of diesel fuel and the ethanol mixture entrained into the diesel fuel spray; the second mild combustion with flame propagation of the ethanol mixture; and the third rapid combustion with auto-ignition of the unburned ethanol mixture without knocking. The third stage combustion occurs occasionally at several operating conditions and has been termed as PREMIER (premixed mixture ignition in the end-gas region) combustion.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
Technical Paper

An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines

2017-10-08
2017-01-2372
To monitor emission-related components/systems and to evaluate the presence of malfunctioning or failures that can affect emissions, current diesel engine regulations require the use of on-board diagnostics (OBD). For diesel particulate filters (DPF), the pressure drop across the DPF is monitored by the OBD as the pressure drop is approximately linear related to the soot mass deposited in a filter. However, sudden acceleration may cause a sudden decrease in DPF pressure drop under cold start conditions. This appears to be caused by water that has condensed in the exhaust pipe, but no detailed mechanism for this decrease has been established. The present study developed an experimental apparatus that reproduces rapid increases of the exhaust gas flow under cold start conditions and enables independent control of the amount of water as well as the gas flow rate supplied to the DPF.
X