Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Two-Phase Lattice Boltzmann Simulations and In-Situ Measurements with X-ray CT Imaging on Liquid Water Transport in PEFCs

2011-04-12
2011-01-1347
Water management is one of the key factors to ensure high performance, cold start and durability of polymer electrolyte fuel cells (PEFCs), and it is important to understand the behavior of liquid water in PEFCs. X-ray computed tomography (X-ray CT) imaging and the two-phase lattice Boltzmann method (two-phase LBM) are applied to analyze the mechanism of water transport in the gas diffusion layers (GDLs) and the gas channels in generating PEFCs. The results of the two-phase LBM are compared with those of X-ray CT imaging, and are found to agree qualitatively in that water is discharged along the hydrophilic channel wall and accumulated in the GDL, especially under the rib. The effects of the wettability of the GDLs, and of the gas channels, the diameter of the carbon fibers, and the porosity of the GDLs on water discharge from the GDLs and gas channels are also investigated.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Technical Paper

The Structure of an Advanced Independent Rear Toe-Control System

2015-04-14
2015-01-1499
Honda announced an independent right and left rear toe control system (first generation) in 2013 and presented it as the world's first. As stated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has achieved a balance between an enjoyable driving experience in which handling is performed at the driver's will (“INOMAMA” handling) and stable driving performance.(1) This first generation is optimally designed to the vehicle specifications such as suspension axial force and steering gear ratio of the vehicle to which the system is applied. For more widespread application of independent rear toe control technology, a next generation system (second generation) has been developed, which achieves both cost reduction and flexible system performance which can be adapted to a variety of vehicles. The system development began by setting the required target performance with consideration for adaptation to various car models.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 2, Cooling Using Heat Pipes

2015-04-14
2015-01-1649
In our preceding report [1], we showed that the thermal conductivity of a heat pipe dramatically improves during high-speed reciprocation. However, this cooling method has rarely been applied to car engine pistons because the thermal conductivity of commercially available heat pipes does not increase easily even if the pipe is subjected to high-speed reciprocation. In consideration of the data from our preceding report, we decided to investigate heat pipe designs for car engine pistons, propose an optimum design, and conduct thermal analysis of the design. As a result, we found that it is possible to transport heat from the central piston head area, where cooling is most needed, to the piston skirt area, suggesting the possibility of efficient cooling.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 1, Basic Test for Achieving High Heat Transfer Coefficient

2015-04-14
2015-01-1653
Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of Piston Pin Noise of Semi-Floating System

2012-04-16
2012-01-0889
This paper summarizes the piston pin noise mechanism and show the way to reduce noise level of semi-floating system. A mechanism of piston pin noise of semi-floating system was clarified by measurement of piston and piston pin behavior and visualization of engine oil mist around piston and piston pin. Piston and piston pin behavior was measured by accelerometer and eddy current type gap sensor with linkage system at the actual engine running condition. Engine oil behavior was visualized and measured its flow vector by Particle Tracking Velocimetry (PTV). For PTV, engine oil mist particle image was taken by high speed camera with fiber scope attached to linkage system. From themeasurement, it was cleared that engine oil doesn't reach to piston hole from undersurface of piston land and come rushing out from piston broach via groove. The result shows that lacking of engine oil between piston and piston pin makes noise larger.
Technical Paper

Study of Knocking Damage Indexing Based on Optical Measurement

2015-04-14
2015-01-0762
Attempts were made to measure knocking phenomenon by an optical method, which is free from influences of mechanical noises and is allowing an easy installation to an engine. Using a newly developed high durability optical probe, the light intensity of hydroxyl radical component, which is diffracted from the emitted light from combustion, was measured. The intensity of this emission component was measured at each crank angle and the maximum intensity in a cycle was identified. After that, the angular range in which the measured intensity exceeded 85% of this maximum intensity was defined as “CA85”. When a knocking was purposely induced by changing the conditions of the engine operation, there appeared the engine cycles that included CA85 less than a crank angle of 4 degrees. The frequency of occurrence of CA85 equal to or less than 4 degrees within a predetermined number of engine cycles, which can be interpreted as a knocking occurrence ratio, was denoted as “CA85-4”.
Technical Paper

Study of High Power Dynamic Charging System

2017-03-28
2017-01-1245
The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Technical Paper

Study of CNG Fueled Two-Wheeled Vehicle with Electronically Controlled Gas Injection System

2005-10-12
2005-32-0034
Owing to its combustion characteristics and chemical composition, natural gas features cleaner emissions and lower CO2 compared to gasoline under equal thermal efficiency. Natural gas can be a promising alternative energy source to respond to crude oil exhaustion and global warming issues. Focusing on the utility of natural gas, a feasibility study on CNG (Compressed Natural Gas) -fueled two-wheeled vehicles has been conducted. A proto-type two-wheeled vehicle was made based on a 125 cm3 class gasoline-fueled scooter. To adapt the engine to the use of CNG fuel, an electronically controlled gas injection system was applied to the fuel supply system. To provide abrasion resistance of engine valves and valve seats, the specific matter of gas-fuel was improved. Furthermore, a lubricant circulation passage was added to maintain the temperature of the pressure reducing valve.
Technical Paper

Study of 450-kW Ultra Power Dynamic Charging System

2018-04-03
2018-01-1343
This research sought to develop a dynamic charging system, achieving an unlimited EV cruising range by charging the EV at high power during cruising. This system would help make it possible to finish battery charging in a short time by contact with the EV while cruising and enable drivers to freely cruise their intended routes after charging. A simulation of dynamic charging conditions was conducted for ordinary autonomous cruising (i.e., ordinary EV cruising) when dynamically charging at a high power of 450-kW (DC 750 V, 600 A). This report discusses the study results of a method of building the infrastructure, as well as looking at the cruise test results and future outlook. In particular, the research clarified the conditions for achieving an unlimited vehicle cruising range with a 450-kW dynamic charging system. It also demonstrated that this system would allow battery capacities to be greatly reduced and make it possible to secure the battery supply volume and resources.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Technical Paper

Shifting Mechanisms and Variation of Frictional Coefficients for CVT Using Metal Pushing V-Belts

2000-03-06
2000-01-0840
In order to reveal the shifting mechanisms for CVT using a metal pushing V-belt, three shifting rates were introduced. The belt motion in the pulley groove was also characterized using mean coefficients of friction as parameters, which identify the slippage condition of the belt in the pulley groove. The experimental results showed that one of shifting rates, dR/ds was almost constant in the narrowing pulley regardless of both rotational speed and transmitted torque. Here, R is the belt pitch radius in the pulley and s is the length measured along the belt pitch line. This fact indicates that the shifting is primarily governed by elastic deformation of blocks of the belt. Power transmitting states were also evaluated using a different type of lubricating oil whose nominal coefficient of friction was higher than that for the conventional AT oil. The observed mean coefficients of friction vary due to oil although the basic response of the CVT unchanged.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Research on Technique for Correction of Running Resistance with Focus on Tire Temperature and Tire Thermal Balance Model

2019-04-02
2019-01-0623
At present, measurements of running resistance are conducted outdoors as a matter of course. Because of this, the ambient temperature at the time of the measurements has a considerable impact on the measurement data. The research discussed in this paper focused on the temperature characteristic of the tires and developed a new correction technique using a special rolling test apparatus. Specifically, using a tire rolling test apparatus that made it possible to vary the ambient temperature, measurements were conducted while varying the levels of factors other than temperature that affect rolling resistance (load, inflation pressure, and speed). Next, a regression analysis was applied to the data for each factor, and coefficients for a relational expression were derived, making it possible to derive a quadratic equation for the tire rolling resistance correction formula.
Technical Paper

Research on Measurement and Simulation Technology of Valve Behavior during Engine Firing

2011-04-12
2011-01-0743
A measurement method for valve behavior during engine firing is established. In order to grasp valve behavior accurately, it has been required to develop a measurement method for valve behavior that takes in account for the condition during engine firing. However, behaviors of a valve train have generally been analyzed during engine motoring because it is difficult to measure them during engine firing. In this study, valve behavior during engine firing can be measured accurately by attaching a gap sensor to the valve guide. Furthermore, the simulation system for valve behavior that treated the valve train as three-dimensional flexible body is built. Under engine motoring condition, high correlation between measurement and simulation is confirmed for valve behavior and spring stress.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

1995-02-01
951036
High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
X