Refine Your Search

Topic

Author

Search Results

Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

2016-04-05
2016-01-1223
A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Technical Paper

Technology to Enhance Deep-Drawability by Strain Dispersion Using Stress Relaxation Phenomenon

2015-04-14
2015-01-0531
When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature. Step motion technology increases the stampability of high-strength, forming-resistant materials and allows for expanded application of these materials.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Journal Article

Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388
We have developed a bench test method to assess driver distraction caused by the load of using infotainment systems. In a previous study, we found that this method can be used to assess the task loads of both visual-manual tasks and auditory-vocal tasks. The task loads are assessed using the performances of both pedal tracking task (PT) and detection response task (DRT) while performing secondary tasks. We can perform this method using simple equipment such as game pedals and a PC. The aim of this study is to verify the reproducibility of the PT-DRT. Experiments were conducted in three test environments in which test regions, experimenters and participants differed from each other in the US, and the test procedures were almost the same. We set two types of visual-manual tasks and two types of auditory-vocal tasks as secondary tasks and set two difficulties for each task type to vary the level of task load.
Technical Paper

Study of High Power Dynamic Charging System

2017-03-28
2017-01-1245
The use of electric vehicles (EV) is becoming more widespread as a response to global warming. The major issues associated with EV are the annoyance represented by charging the vehicles and their limited cruising range. In an attempt to remove the restrictions on the cruising range of EV, the research discussed in this paper developed a dynamic charging EV and low-cost infrastructure that would make it possible for the vehicles to charge by receiving power directly from infrastructure while in motion. Based on considerations of the effect of electromagnetic waves, charging power, and the amount of power able to be supplied by the system, this development focused on a contact-type charging system. The use of a wireless charging system would produce concerns over danger due to the infiltration of foreign matter into the primary and secondary coils and the health effects of leakage flux.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Research on Variable-Speed Brake Control in Multiple-Collision Automatic Braking

2015-04-14
2015-01-1410
According to the North American National Automotive Sampling System Crashworthiness Data System (NASS/CDS), approximately one-half of all accidents during driving are of the secondary collision pattern in which the collision event involves the occurrence of secondary collision. Accidents involving impact to a stopped vehicle (chain-reaction collisions) have increased to approximately 3% of all accidents in North America, and although the rate of serious injury is low, cases have been reported of accidents in which cervical sprain occurs as an after-effect[1]. In order to mitigate these circumstances, research has been conducted on systems of automatic braking for collisions. These systems apply brakes automatically when a first collision has been detected in order to avoid or lessen a second collision. Research on automatic collision braking systems, however, has not examined the multiple collisions parked [1, 2].
Technical Paper

Research on Technique for Correction of Running Resistance with Focus on Tire Temperature and Tire Thermal Balance Model

2019-04-02
2019-01-0623
At present, measurements of running resistance are conducted outdoors as a matter of course. Because of this, the ambient temperature at the time of the measurements has a considerable impact on the measurement data. The research discussed in this paper focused on the temperature characteristic of the tires and developed a new correction technique using a special rolling test apparatus. Specifically, using a tire rolling test apparatus that made it possible to vary the ambient temperature, measurements were conducted while varying the levels of factors other than temperature that affect rolling resistance (load, inflation pressure, and speed). Next, a regression analysis was applied to the data for each factor, and coefficients for a relational expression were derived, making it possible to derive a quadratic equation for the tire rolling resistance correction formula.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

1995-02-01
951036
High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Research Into Surface Improvement for Low Friction Pistons

2005-04-11
2005-01-1647
1 A new surface modification heat treatment technology called Wonder Process Craft which is different from plating and coating, was applied to the skirt section, which is the sliding surface of the piston in an internal combustion engine. This was intended to improve fuel economy and mechanical characteristics by reducing sliding resistance. In the application of solid lubrication, this treatment does not require the usage of binder, which was necessary for conventional coating, leading to the highest level achievable for the low sliding resistance effect inherent of solid lubrication. Since this treatment does not involve any change in significant dimensions, shapes, surface roughness, and so on, applying this treatment is easy. The persistence of the effect, productivity and recyclability of waste and emissions during treatment were also taken into account.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Technical Paper

Optimization of Semi-Floating Piston Pin Boss Formed by Using Oil-Film Simulations

2012-04-16
2012-01-0908
This paper describes the oil-film bearing analysis simulation was utilized for the optimization of pin boss form which reduces a piston-pin noise. It is clear from the mechanism analysis of the piston-pin noise which is the last research that an oil-film flow inside a pin boss is an important factor for pin noise reduction. So, in this research, the oil-film simulation of the piston-pin-boss bearing part was performed using oil-film bearing analysis tool. After setting up the simulation conditions of the oil-film bearing part so that actual pin behavior and high correlativity might be shown, a parameter, effective hydrodynamic angular velocity, and an oil flow rate of change suitable for evaluation of a pin noise were found out. The pin noise in semi floating piston was reduced to the same level as full floating type by applying pin boss form to which each evaluation parameter becomes the optimal to a piston.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Numerical Modeling Study of Catalyst Surface Reactivity and Gas Diffusivity with Lean NOx Catalyst

2015-04-14
2015-01-1058
Catalyst simulation, which can analyze the complicated reaction pathway of exhaust gas purifications and identify the rate-determining step, is an essential tool in the development of catalyst materials. This requires an elementary reaction model which describes the detailed processes, i.e. adsorption, decomposition, and others. In our previous work, the elementary reaction model on Pt/CeO2 catalyst was constructed. In this study, we focused on extending the Zeolite catalyst and including the gas diffusivity through the catalyst layer. The reaction rate of a Zeolite catalyst was expressed by an Arrhenius equation, and the elementary reaction model was composed of 17 reactions. Each Arrhenius parameter was optimized by the catalytic activity measurements. The constructed model was validated with NOx conversion in cyclic experiments which were repeated with Lean phase (NOx adsorption) and Rich phase (NOx reduction).
X