Refine Your Search

Topic

Author

Search Results

Technical Paper

Waza (Skilled Craftsmanship) that Created RA272 Exhaust Pipe used in Formula 1 Race in 1960's

2008-04-14
2008-01-0547
This study attempted to faithfully reproduce and scientifically analyze the process of formation of the exhaust pipe of the winning RA272 engine used in Formula One in the 1960's, using the waza (skills) employed in its fashioning, which have been handed down by its makers. This analysis showed that the manual bending method, used to create the RA272 exhaust pipe, which was filled with sand and bent while being flame-heated, without the use of figures or molds, was superior to the mechanical bending method of that time, from the standpoint of short-term period of production. We have determined that the pipe displays that the microstructure of the material remains stable, even at exhaust temperatures of 700°C to 900°C, and that useful information on the pipe's shape stability and mechanical strength has been provided.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

Technologies for Practical Application of a TBW System for Large Motorcycle with Improved Driving Feel, Sound Quality, and Layout Flexibility

2010-04-12
2010-01-1094
Honda R&D has developed a throttle-by-wire (TBW) system that meets the needs of motorcycles where the attitude of the vehicle body is controlled by operation of the throttle. To gain high response and following for the throttle valve, we employed a new adaptive control algorithm. The newly developed system has an idling combustion stabilization function and a three-dimensional control function for the throttle-opening map based on running gear and engine speed. With those functions, we improved the controllability of the motorcycle, especially for small throttle openings. Furthermore, we improved the feeling of the limiter control used in maximum-speed limitation. For the overall system, intake system related devices are consolidated to improve the layout flexibility and expand the mounting options on the motorcycle.
Journal Article

Technique for Predicting Powertrain Self-Excited Vibration at Vehicle Start-Up

2015-04-14
2015-01-1674
A clutch FEM model was created to quantitatively understand the operation and dynamic friction characteristics of the facing materials. And a simulation model for dynamic behavior analysis of the torque transmission characteristics from a transmission that incorporates drivetrain damping characteristics to the vehicle body was constructed. The data of the actual vehicle was also measured when vibration occurs and loss torque is generated by friction in the drivetrain, and damping characteristics were determined from the measurement values. In order to confirm the usefulness of this method, the construction of a clutch that suppresses self-excited vibration was examined by simulation and the reduction of vibration in an actual vehicle was confirmed.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Journal Article

Study of the Mechanism of Accessory Drive Belt Noise

2009-04-20
2009-01-0186
The mechanism of noise production in engine accessory drive belts was discussed. Applying geometric considerations to the transversal vibration of the belt, which is one cause of belt noise, the research showed that vibration of the belt is affected by fluctuations in the rotational speed of the crankshaft, and that the amplitude of the vibrations fluctuates cyclically. The cycle of this amplitude fluctuation is synchronous with engine speed, and for a 3-cylinder gasoline engine, its frequency is the (1.5*n)th engine rotation order. The spectrum pattern of belt vibration therefore shows components of the natural frequency±(1.5*n)th orders. The research demonstrated that at engine speeds at which the natural frequency±(1.5*n)th orders and the (1.5*n)th order frequencies, the engine excitation orders, are identical, multiple engine orders excite resonance in the belt, producing a high degree of belt vibration.
Technical Paper

Study of an Aftertreatment System for HLSI Lean-burn Engine

2018-04-03
2018-01-0945
Lean-burn is an effective means of reducing CO2 emissions. To date, Homogenous Lean Charge Spark Ignition (HLSI) combustion, which lowers emissions of both CO2 and NOx, has been studied. Although HLSI realizes lower emission, it is a major challenge for lean-burn engines to meet SULEV regulations, so we have developed a new aftertreatment system for HLSI engines. It consists of three types of catalysts that have different functions, as well as special engine control methods. As the first stage in achieving SULEV emissions, this study focused on enhancing performance under lean conditions. HLSI engine exhaust gases contain high concentrations of hydrocarbons, including a large amount of paraffin, which are difficult to purify, rather than low concentrations of NOx. Therefore, the key point in low emissions is to purify not only NOx, but also high concentrations of paraffin at the same time.
Technical Paper

Study of Sound Isolation Structure for Engine Generators

2005-10-12
2005-32-0070
In the development of sound isolation type generators, a three-division case structure divided into two cool zones and one hot zone was studied. This study was aimed at achieving compatibility between sound isolation and cooling capabilities that are in a trade-off relationship. Sound isolation of 12.1 dB(LWA) was achieved by this structure, while obtaining equivalent cooling capabilities to that of open type generators. As a result of adopting this new generator structure for India domestic consumption, the compliance with the Indian noise regulation phase II was achieved for the first time by a mass produced generator.
Technical Paper

Study of Self-induced Vibration in an Operating Metal Pushing V-belt CVT

2012-04-16
2012-01-0309
The mechanism of vibration in a metal pushing V-belt was analyzed using a simulation of the dynamic behavior of the belt in order to identify measures in response to unexpected noise occurring during CVT development. The results showed that the unexpected noise originated in self-induced vibration occurring when the elements of the belt moved in the radial direction close to the exit of the drive pulley. This paper will also discuss the realization of a method of reducing the unexpected noise.
Technical Paper

Study of Piston Pin Noise of Semi-Floating System

2012-04-16
2012-01-0889
This paper summarizes the piston pin noise mechanism and show the way to reduce noise level of semi-floating system. A mechanism of piston pin noise of semi-floating system was clarified by measurement of piston and piston pin behavior and visualization of engine oil mist around piston and piston pin. Piston and piston pin behavior was measured by accelerometer and eddy current type gap sensor with linkage system at the actual engine running condition. Engine oil behavior was visualized and measured its flow vector by Particle Tracking Velocimetry (PTV). For PTV, engine oil mist particle image was taken by high speed camera with fiber scope attached to linkage system. From themeasurement, it was cleared that engine oil doesn't reach to piston hole from undersurface of piston land and come rushing out from piston broach via groove. The result shows that lacking of engine oil between piston and piston pin makes noise larger.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Research on Noise Reduction of Linkage Drive Gear in Extended Expansion Linkage Engine

2011-11-08
2011-32-0538
The authors have reported on a study on extended expansion linkage engine to enhance thermal efficiency since 2006. This report discusses the use of a test engine applied to a Micro Combined Heat and Power Generation Unit for household use, in order to reduce engine noise at a rated operation. Test engine noise is mainly caused by gear meshing for the multiple linkage system, so helical gear with higher contact ratio than that of spur gear was used. Measurement of engine noise revealed that test engine noise increased by 3.2 dB(A) over compared conventional engine. From results of behavior analysis by mechanical simulation, when transmission direction of the relative torque between the crankshaft and the eccentric shaft is reversed, the direction of the thrust force acting on the gear is reversed. For this reason, the test engine noise increases because each shaft vibrates, and rattle noise occurs.
Journal Article

Research on Mechanism of Change in Suspension Transfer Force in Relation to Low-Frequency Road Noise

2015-04-14
2015-01-0667
Cabin quietness is one of the important factors for product marketability. In particular, the importance of reducing road noise is increasing in recent years. Methods that reduce acoustic sensitivity as well as those that reduce the force transferred from the suspension to the body (the suspension transfer force) are used as means of reducing road noise. Reduction of the compliance of the body suspension mounting points has been widely used as a method of reducing acoustic sensitivity. However, there were cases where even though this method reduced acoustic sensitivity, road noise did not decrease. This mechanism remained unclear. This study focused on the suspension transfer force and analyzed this mechanism of change using the transfer function synthesis method. The results showed that the balance between the body's suspension mounting points, suspension bush, and suspension arm-tip compliance is an important factor influencing the change in suspension transfer force.
Technical Paper

Predictive Technique for Forced Vibration in Hybrid Transmission

2016-04-05
2016-01-1058
The subject is technology for damping forced vibration in the multiplate wet clutches used in hybrid vehicle transmissions. As a predictive technique for forced vibration caused by the structure of the clutch, three-dimensional simulation was used in the present study to anticipate the modes of vibration that occur. Next, a one-dimensional simulation was created as a predictive technique for drivetrain torsional vibration from the engine to the driveshaft. The one-dimensional simulation created was used to extract the modes of operation that are severe with regard to forced vibration from target values for vibration anticipated from the vehicle body. The results obtained were used with three-dimensional simulation to change the clutch structure to provide greater latitude with regard to the target for forced vibration.
X