Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibrational Analysis Method on High-frequency Electric-drive Motor Noise

2020-04-14
2020-01-0463
When a vehicle is cruising, unpleasant noise in the 4 to 5 KHz high-frequency band can be heard at the center of all seats in the vehicle cabin. In order to specify the source of this noise, the correlation between the noise and airborne noise from the outer surface of the transmission was determined, and transfer path analysis was conducted for the interior of the transmission. The results indicated that the source of the noise was the 0th-order breathing mode specific to the drive motor. To make it possible to predict this at the desk, a vibrational analysis method was proposed for drive motors made up of laminated electrical steel sheets and segment-type coils. Material properties data for the electrical steel sheets and coils was employed in the drive motor vibrational analysis model without change. The shapes of the laminated electrical steel sheets and coils were also accurately modeled.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Technical Paper

Verification of Influences of Biodiesel Fuel on Automotive Fuel-line Rubber and Plastic Materials

2010-04-12
2010-01-0915
At present, biodiesel fuels using natural-origin materials are expanding in share, and there are many different kinds. Biodiesel fuel generates organic acid when it deteriorates, so care is needed when evaluating the influence of the fuel on automotive fuel-line materials. A model biodiesel fuel was designed taking into account deterioration of the fuel and mixing of impurities into it. Durability of automotive fuel-line rubber and plastic materials were evaluated by using the model fuel. From the evaluation results, it was found that fluoroelastomer (hereafter referred to as FKM) and polyacetal resin (hereafter referred to as POM) deteriorate depending on specific fuel properties and deterioration state. In this paper, we report evaluating results of biodiesel fuels on the automotive fuel-line rubber and plastic materials, and the importance of biodiesel fuel property management.
Technical Paper

Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics

2015-04-14
2015-01-0750
Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible.
Technical Paper

Trend of Bolts for Use in Automobiles and Development of Class 10.9 Low Carbon Boron Steel Bolt

1997-02-24
970516
There are strong demands for reduced production costs of ordinary bolts, of which a large number are used throughout automobiles. In addition, there are continued demands for higher performance and lower weight in automobiles. For this reason, there is an increasing trend to develop steel for high strength bolts or to adopt the plastic region tightening method. At present, the principal materials used in high strength bolts of class 10.9 are medium carbon alloy steel. When a low carbon boron steel bolt is used as a class 10.9 bolt under high stress, delayed fracture may occur, so that these cannot always be used for the body and chassis applications. The authors have developed a new low carbon boron steel with increased delayed fracture strength on the same order as that of JIS-SCM435 (equivalent to SAE4135) medium carbon alloy steel. Attention was focused principally on decreasing the amounts of phosphorus and sulfur in the steel.
Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

2016-04-05
2016-01-1223
A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

The Properties of Hybrid Fiber Reinforced Metal and It's Application for Engine Block

1989-02-01
890557
The weight-saving requirements for automobiles are important. In order to produce a lighter engine, an aluminum block with cast-iron liners and a hypereutectic aluminum-silicon alloy block have been developed. (1)*, (2), (3), (4), (5), (6) We developed a new aluminum engine block which has the cylinder bore surface structure reinforced with short ceramic fiber. We also established technology suitable for mass-production including a fiber preform process and a non-destructive inspection method. In this paper, the optimum properties and production technology of MMC engine blocks are introduced. A portion of the paper is dedicated to the results of a comparison study between a new light-weight aluminum engine block, a hypereutectic aluminum-silicon engine block and an aluminum engine block with cast-iron liners.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

1992-02-01
920455
The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

Technology to Enhance Deep-Drawability by Strain Dispersion Using Stress Relaxation Phenomenon

2015-04-14
2015-01-0531
When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature. Step motion technology increases the stampability of high-strength, forming-resistant materials and allows for expanded application of these materials.
Journal Article

Study on Wheel Stiffness Considering Balance between Driving Stability and Weight

2015-04-14
2015-01-1755
This paper studies various wheel stiffness configurations, with the aim of enhancing driving stability while minimizing the increase in weight associated with an increase in stiffness. Reinforcement was added to the wheel disk and the wheel rim of standard aluminum wheels for passenger vehicles in order to produce four wheels with different stiffness configurations. The effects of disk stiffness and rim stiffness on tire contact patch profiles and driving stability were quantitatively evaluated. From the results of tests with the four wheels, it was observed that disk stiffness and rim stiffness have differing effects on tire contact patch profiles, and on driving stability. Disk stiffness influences especially tire contact patch length, and tire contact patch length influences especially maneuverability in driving stability. Rim stiffness influences especially tire contact patch area, and tire contact patch area influences especially stability in driving stability.
Technical Paper

Study on Variable Valve Timing System Using Electromagnetic Mechanism

2004-06-08
2004-01-1869
In recent years, increasing attention has been paid to a non-throttling technology that is expected to contribute to a reduction in fuel consumption. This paper describes a study on the technology behind the electromagnetic variable valve timing mechanism (electromagnetic valve mechanism). The electromagnetic valve mechanism ensures highly efficient and stable valve opening/closing control. The detailed information and findings will be described in the main body. In addition, the advantages of the mechanism's application to a homogeneous charge compression ignition engine (HCCI engine) will also be described.
Technical Paper

Study on Maximizing Exergy in Automotive Engines

2007-04-16
2007-01-0257
The use of waste heat for automobile engine that applied Rankine cycle from the viewpoint of exergy (available energy) was researched. In order to recover heat to high quality energy, a heat-management engine whose exhaust port was replaced with an innovative evaporation device was developed. With this engine, high temperature and high pressure steam (400 degree C, 8MPa) could be generated from a large amount of the exhaust loss. In addition, high temperature water (189 degree C) was obtained from cooling loss. Consequently, the system that recovered more exergy from waste heat was established. To verify the system, the Rankine cycle system was installed in a hybrid vehicle and the automatic control system to change steam temperature and pressure according to the load variation was constructed. As the result of vehicle testing, thermal efficiency was increased from 28.9% to 32.7% (by 13.2% increase) at 100km/h constant vehicle speed.
Technical Paper

Study on Impulse Charger for Enhancement of Volumetric Efficiency of SI Engine

2006-04-03
2006-01-0191
Downsizing the engine would be an effective means of improving fuel economy and reducing CO2 emissions. In this case, low-speed torque generation can be enhanced through the use of impulse charging technology, a subject attracting the attention of many researchers. This paper reports the basic characteristics of impulse charging identified through research using a single-cylinder test engine, aiming for application of the technology to spark ignition (SI) engines. To ensure the maximum level of volumetric efficiency under impulse charging conditions, two requirements are controlling the timing of switching from a negative to a positive pressure wave while turning its direction at the intake chamber, and maximizing the positive pressure wave.
Technical Paper

Study on HCCI-SI Combustion Using Fuels Ethanol Containing

2007-10-29
2007-01-4051
Bio-ethanol is one of the candidates for automotive alternative fuels. For reduction of carbon dioxide emissions, it is important to investigate its optimum combustion procedure. This study has explored effect of ethanol fuels on HCCI-SI hybrid combustion using dual fuel injection (DFI). Steady and transient characteristics of the HCCI-SI hybrid combustion were evaluated using a single cylinder engine and a four-cylinder engine equipped with two port injectors and a direct injector. The experimental results indicated that DFI has the potential for optimizing ignition timing of HCCI combustion and for suppressing knock in SI combustion under fixed compression ratio. The HCCI-SI hybrid combustion using DFI achieved increasing efficiency compared to conventional SI combustion.
Technical Paper

Study on Engine Management System Using In-cylinder Pressure Sensor Integrated with Spark Plug

2004-03-08
2004-01-0519
There has been strong public demand for reduced hazardous exhaust gas emissions and improved fuel economy for automobile engines. In recent years, a number of innovative solutions that lead to a reduction in fuel consumption rate have been developed, including in-cylinder direct injection and lean burn combustion technologies, as well as an engine utilizing a large volume of exhaust gas recirculation (EGR). Furthermore, a homogeneous charge compression ignition (HCCI) engine is under development for actual application. However, one of the issues common to these technologies is less stable combustion, which causes difficulty in engine management. Additionally, it is now mandatory to provide an onboard diagnosis (OBD) system. This requires manufacturers to develop a technology that allows onboard monitoring and control of the combustion state. This paper reports on an innovative combustion diagnostic method using an in-cylinder pressure sensor.
Technical Paper

Study on Contribution of Tire Driving Stiffness to Vehicle Fuel Economy

2012-04-16
2012-01-0794
In recent years, the contribution of tires on vehicle fuel economy has been garnering attention. Up until now, rolling resistance coefficient (RRC) has been the standard way of measuring the amount of impact the tire has on fuel economy. We devised a new method for evaluating the impact of tires on fuel economy that incorporates the concept of tire “driving transmission efficiency” (hereinafter referred to as “driving stiffness”). In doing so, we have clarified the technology direction for contributing to the improvement of fuel economy while maintaining vehicle maneuverability by reducing RRC and improving tire driving stiffness.
Technical Paper

Study on Combustion Monitoring System for Formula One Engines Using Ionic Current Measurement

2004-06-08
2004-01-1921
Formula One engines, which are the pursuit of the ultimate in performance, tend to be comparatively vulnerable to durability issues. These engines sometimes run under a state of unstable combustion as compensation for improved fuel economy. To cope with these issues, there have been strong demands in the racing field for a technology that will allow constant monitoring and prompt action to be carried out on system malfunctions and failures, as well as unstable combustion. The research program described in this paper deals with an onboard technology for monitoring combustion under all the operational conditions using ionic current measurement. The technology will possibly be applied to engine management and car-to-pit communications via telemetering. The scope of the control it offers includes; detection of misfire and hesitation, detection and management of detonation, and management of lean-burn combustion.
Technical Paper

Study of Self-induced Vibration in an Operating Metal Pushing V-belt CVT

2012-04-16
2012-01-0309
The mechanism of vibration in a metal pushing V-belt was analyzed using a simulation of the dynamic behavior of the belt in order to identify measures in response to unexpected noise occurring during CVT development. The results showed that the unexpected noise originated in self-induced vibration occurring when the elements of the belt moved in the radial direction close to the exit of the drive pulley. This paper will also discuss the realization of a method of reducing the unexpected noise.
Technical Paper

Study of Power Generation Loss Decrease in Small Gas Engine Cogeneration

2008-09-09
2008-32-0044
Power generation systems employed in small gas engine cogeneration were examined to compare losses in the converter, which converts three-phase alternator power to direct current (DC) voltage, and losses in the inverter, which converts power to high-quality alternating current (AC) voltage that can be connected into electric utility power lines. It is a characteristic of alternators that their efficiency and output voltage decline in the heavy load range. It was found, therefore, that step-down methods using thyristors operate in a low-efficiency range in order to provide a satisfactory supply of the targeted DC output voltage. Use of switching regulator methods, on the other hand, can generate the target voltage by regulating a switching device after first storing the alternator output in a choke coil. It was found, therefore, that these use the high-efficiency range of the alternator. The converter was found to have a resulting loss decrease of 19.4 W.
X