Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota “ECT-i” a New Automatic Transmission with Intelligent Electronic Control System

1990-02-01
900550
TOYOTA has developed a new automatic transmission, called the A341E. This transmission employs a unique engine and transmission integrated intelligent control system named “ECT-i”, and a high performance “Super Flow” Torque Converter. This control system is capable of total control of engine torque and clutch hydraulic pressure during shifting, which has resulted in very smooth shift without changes over the life of the transmission. The “Super Flow” Torque Converter has a modified geometry optimized by the analysis of internal flow by means of computer simulations, attaining the highest efficiecy in the world. With the use of such systems, this new automatic transmission has improved total performance of the vehicle.
Technical Paper

Toyota New TNGA High-Efficiency Eight-Speed Automatic Transmission Direct Shift-8AT for FWD Vehicles

2017-03-28
2017-01-1093
The new eight-speed automatic transmission direct shift-8AT (UA80) is the first automatic transmission to be developed based on the Toyota New Global Architecture (TNGA) design philosophy. Commonizing or optimizing the main components of the UA80 enables compatibility with a wide torque range, including both inline 4-cylinder and V6 engines, while shortening development terms and minimizing investment. Additionally, it has superior packaging performance by optimizing the transmission size and arrangement achieving a low gravity center. It contributes to Vehicle’s attractiveness by improving driving performance and NVH. At the same time, it drastically improves fuel economy and quietness.
Technical Paper

The New RWD 6 Speed Automatic Transmission for SUV and Truck

2016-04-05
2016-01-1097
Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new RWD 6 speed automatic transmission, AWR6B45(AC60), suitable for SUV’s and LDT’s in the worldwide market, not only for North America but also for other countries including emerging nations. This 6 speed automatic transmission has achieved low cost, equivalent to AW and TMCs’ current 5 speed automatic transmission, while realizing improvement in both fuel economy and driving performance against current in-house 5-speed automatic transmissions, in addition to satisfying both toughness against various usage and light weight/compactness. They are accomplished by using a compact gear train structure, the latest efficiency improvement technologies, and a high-response, compact hydraulic control system. In addition, the compactness of this 6 speed automatic transmission enables it to replace current 4 speed and 5 speed automatic transmissions for various engine applications.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

1992-02-01
920455
The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

Study on Variable Valve Timing System Using Electromagnetic Mechanism

2004-06-08
2004-01-1869
In recent years, increasing attention has been paid to a non-throttling technology that is expected to contribute to a reduction in fuel consumption. This paper describes a study on the technology behind the electromagnetic variable valve timing mechanism (electromagnetic valve mechanism). The electromagnetic valve mechanism ensures highly efficient and stable valve opening/closing control. The detailed information and findings will be described in the main body. In addition, the advantages of the mechanism's application to a homogeneous charge compression ignition engine (HCCI engine) will also be described.
Journal Article

Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System

2014-10-13
2014-01-2614
Bio-ethanol is used in many areas of the world as ethanol blended gasoline at low concentrations such as “E10 gasoline”. In this study, a method was examined to effectively use this small amount of ethanol within ethanol blended gasoline to improve thermal efficiency and high-load performance in a high-compression-ratio engine. Ethanol blended gasoline was separated into high-concentration ethanol fuel and gasoline using a fuel separation system employing a membrane. High-ethanol-concentration fuel was selectively used at high-load conditions to suppress knocking. In this system, a method to decrease ethanol consumption is necessary to cover the wide range of engine operation. Lower ethanol consumption could be achieved by Miller-cycle operation because decrease of the effective compression ratio suppresses knocking. However, high-load operation was limited due to the decrease in intake air volume with Miller-cycle operation.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

New Combustion and Powertrain Control Technologies for Fun-to-Drive Dynamic Performance and Better Fuel Economy

2017-03-28
2017-01-0589
Toyota Motor Corporation has developed a new series of engines under the Toyota New Global Architecture (TNGA) design philosophy, which aims to satisfy customer requirements for both fun-to-drive dynamic performance and better fuel economy by adopting a high-speed combustion concept to improve thermal efficiency and specific power. This new engine series achieves a maximum engine thermal efficiency of 40%, a specific power ratio of 60 kW/l, and lower emissions by combining high-speed combustion and a high compression ratio with a high-tumble intake port, high-energy ignition coil, high-pressure multi-hole nozzle direct injector, and new electrical variable valve timing (VVT). The first engine in this series is a new 4-cylinder 2.5-liter gasoline naturally aspirated engine for use in passenger cars alongside a new TNGA 8-speed automatic transmission, which was introduced for minivans and SUVs in the U.S. market in 2016.
Technical Paper

New 1.0L I3 Turbocharged Gasoline Direct Injection Engine

2017-03-28
2017-01-1029
To comply with the environmental demands for CO2 reduction without compromising driving performance, a new 1.0 liter I3 turbocharged gasoline direct injection engine has been developed. This engine is the smallest product in the new Honda VTEC TURBO engine series (1), and it is intended to be used in small to medium-sized passenger car category vehicles, enhancing both fuel economy through downsizing, state-of-the-art friction reduction technologies such as electrically controlled variable displacement oil pump and timing belt in oil system, and also driving performance through turbocharging with an electrically controlled waste gate. This developed engine has many features in common with other VTEC TURBO engines such as the 1.5 liter I4 turbocharged engine (2) (3), which has been introduced already into the market.
Journal Article

Multi Attribute Optimization: Fuel Consumption, Emissions and Driveability

2012-04-16
2012-01-0946
In making our products more attractive, it is becoming increasingly important to balance multiple areas of performance, such as fuel economy, emissions and drivability. Customer expectations and government legislations, to protect global environment, strongly increase the work complexity of auto firms in order to release high quality and eco-friendly vehicles. The balancing between several target is becoming a key factor in the car design: respect current (and anticipate future) emission limits optimization of fuel consumption insure high level of drivability maintain acceptable(or increase) performances sustain acceptable cost, reliability, etc. From recent emissions limitations, engine cold start (at the beginning of driving cycle) plays a major role in the total amount of pollutants. Especially, achievements of HC limitations are a big challenge for vehicles with a conventional spark ignition engine.
Technical Paper

Honda 3.0 Liter, New V6 Engine

1997-02-24
970916
For a 1997 model year passenger car, Honda has released an all-new 3.0 liter, transversely mounted, SOHC VTEC (Variable Valve Timing and Lift Electronic Control) V6 engine. This compact, light-weight, state-of-the-art V6 engine achieves 147 kW @ 5500 rpm, improves fuel economy, and uses regular unleaded fuel. This is the world's first SOHC VTEC V6 engine, and the first V6 to be manufactured in the United States by Honda.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

High Efficiency 6-speed Automatic Transmission

2010-04-12
2010-01-0858
A new 6-speed automatic transmission (AT) has been developed with the aim of enhancing fuel economy, raising efficiency, and achieving greater compactness. The unit was built on a parallel-shaft structure similar to the previous Honda AT, which has high torque transmission efficiency. The new AT was given more gear speeds and the ability to handle higher input torque from the engine. On the one hand, bolt structure for shaft tightening was implemented, the forward-reverse shift mechanism was placed on the input shaft and common gear trains are provided. As a result of these and other measures, the total length of the new transmission is 18 mm shorter than the previous model 5-speed AT. A multi-plate lock-up clutch (LC) structure with a separate chamber in the torque converter was also adopted so that the lock-up torque capacity could be increased and the LC control range expanded.
Technical Paper

Driveability Improvement with Innovative Toyota 8 Speed Automatic Transmission Control

2017-03-28
2017-01-1109
To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
Technical Paper

Development of the Variable Valve Timing and Lift (VTEC) Engine for the Honda NSX

1991-01-01
910008
The Honda variable valve timing and lift electronic control system (VTEC) is incorporated in the engine of the NSX sports car that is scheduled for sales in Europe this year. In the process of advancement of Honda's engine technology, VTEC was developed for much higher output and higher efficiency. This is actually the first system in the world that can simultaneously switch the timing and lift of the intake and exhaust valves. This system has made improvements in maximum output at high rpm, and also improved the low rpm range, such as idling stability and starting capability.
Technical Paper

Development of the New THS-II Powertrain for Compact Vehicles

2012-04-16
2012-01-1017
Reflecting on the world's trend on saving crude oil consumption and to create an economical fuel efficient vehicle for the increasing world population, a new THS-II HV powertrain has been developed for the compact vehicle class. The application of a THS type powertrain for the compact vehicle class was a first for the world and to achieve it, brand new hardware, and software needed to be developed. For the Internal Combustion Engine (ICE), state of the art technologies such as the use of the Atkinson cycle with Variable Valve Timing (VVT), cooled exhaust gas recirculation (EGR), an electric water pump, a compact exhaust manifold, a Low Friction chain, beltless system and exhaust heat recovery system were applied. For the electric motor, copper wire with a rectangular cross section and divided stator cores combined with a newly developed production process were applied for higher volumetric density.
Technical Paper

Development of e-AWD Hybrid System with Turbo Engine for SUVs

2023-04-11
2023-01-0470
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system.
Technical Paper

Development of a Shift Control System for Automatic Transmissions Using Information from a Vehicle Navigation System

1999-03-01
1999-01-1095
We developed a new automatic transmission control system that performs shift control for the automatic transmission (A/T) using the road data obtained from the navigation system, which previously had been used only for route guidance, and installed it in a new car, Progrès. This system reads the distance to the approaching corner and its shape based on the vehicle's position data and the data of the approaching road obtained from the navigation system, and determines the optimum gear based on these data and the current vehicle speed to perform optimum shift control in linkage with the driver's driving operation. In this paper, configuration, features and effects of this new A/T control system that takes consideration of navigation data are described.
Technical Paper

Development of a Hybrid System for the V6 Midsize Sedan

2005-04-11
2005-01-0274
The Accord Hybrid has been developed to offer the driving performance of a V6 midsize sedan while achieving Civic class fuel economy. The engine is based on a V6 3.0L SOHC VTEC engine, with VCM (variable cylinder management) system. The transmission is a thin 5-speed automatic transmission, modified to integrate with a hybrid system for idle stop, regeneration driving and so on. The IMA (Integrated Motor Assist) system is based on the model employed in the Civic Hybrid. During development the size of the thin DC brushless motor was increased and an IPM (Interior Permanent Magnet) rotor employed, resulting in an improvement of approximately 26% in maximum torque. Controls were developed to effectively utilize the deceleration energy regenerated by the IMA system that assist in providing expansion to the 3-cylinder operation zone, and increase the frequency of the 3-cylinder operation.
Journal Article

Development of Variable Valve Timing System Controlled by Electric Motor

2008-04-14
2008-01-1358
To meet the requirements for lower fuel consumption and emissions as well as higher performances, a “Variable Valve Timing - intelligent by Electric motor (VVT-iE)” system has been newly developed. The system has been firstly adopted to the intake valve train of the Toyota's new 4.6 and 5.0 litter V8 SI engine series. The VVT-iE is composed of a cam phasing mechanism connected to the intake camshaft and brushless motor integrated with its intelligent driver. The motor-actuated system is completely free from operating limitation caused from hydraulic conditions. This enjoys an advantage for reducing cold HC. The system also presents further reduction in fuel consumption.
X