Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Understanding 3 Cylinder CVT Vehicle for Improving Fuel Economy and Reducing Noise and Vibration

2016-04-05
2016-01-1294
This study presents the NVH characteristics of a passenger vehicle with a three-cylinder engine and a Continuously Variable Transmission (CVT) and an optimization procedure to achieve balance between fuel economy and NVH. The goal of this study is to improve fuel economy by extending the lock-up area of the damper clutch at low vehicle speed and to minimize booming noise and body vibration caused by the direct connection of the engine and transmission. Resonance characteristics of the chassis systems and driveline have been studied and optimized by the experiment. NVH behavior of the vehicle body structure is investigated and modifications for refinement of booming and body vibration are proposed by simulation using MSC NASTRAN. Calibration parameters for CVT control are optimized for fuel economy and NVH. As a result, the lock-up clutch area has been extended by 300RPM and the fuel economy has been improved by about 1%, while the NVH characteristics of the vehicle satisfy the targets.
Technical Paper

Two-Staged Modeling of Alternator

2007-08-05
2007-01-3471
The alternator provides power to vehicle electrical loads with the battery, and its maximum current depends on various factors such as electrical load, engine speed, thermal condition, and other variables. Above all, thermal effects make alternator simulations more complicated. For example statically similar conditions may show different results according to the temperature variation for each alternator operation. This paper proposes a two-stage statistically-based model structure which separates dynamic thermal effects from steady state performance. The method was validated by experiments and shows good predictive performance, suitable for use in test reduction.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
Technical Paper

The Unified Relationship between Torque and Gear Ratio and Its Application in Multi-Step Automatic Transmissions

2016-04-05
2016-01-1098
The market demands for CO2 reduction and fuel economy have led to a variety of new gear set concepts of automatic transmissions with 4 planetary gear sets and 6 shift elements in recent years. Understanding the relationship between the torque of clutch and brake and gear ratio in the design stage is very important to assess new gear set concepts and to set up the control strategy for enhancing shift quality and to reduce the heat generation of clutch and brake. In this paper, a new systematic approach is used to unify the relationship between torque and gear ratio during the gear shift for all multi-step planetary automatic transmissions. This study describes the unified concept model with a lumped inertia regardless of the specific transmission layout and derives the principal unified relationship equations using torque and energy analysis, which prove that the sum of brake torque is always gear ratio -1 in every in-gear.
Technical Paper

The Study on the Optimization of Attachment Stiffness in Vehicle Body

2007-05-15
2007-01-2346
The achievement of improved NVH performance with light weighted body and low cost is very important, but difficult job to be accomplished in vehicle development. One of the various methods for the accomplishment of this goal is the optimization of the stiffness attached to a vehicle body and chassis. It is known that sufficient stiffness at the body attachments improves the flexibility of bushing rate tuning. In this paper, the theoretical consideration and analysis tool to estimate local stiffness value quantitatively are introduced. Also, the local stiffness values at various attachment locations in trimmed body are measured. The operational forces at body attachments are estimated through the TPA (Transfer Path Analysis). The suitability of attachment stiffness is judged based on the required NVH target to attain the optimal attachment stiffness in vehicle body.
Technical Paper

The Study of Optimization of Sliding Door Effect

2019-03-25
2019-01-1425
A sliding door system is one of the vehicle door types, which is generally applied to the MPVs. The Sliding door is contains three rails (an upper, a center, and lower rail), which are mounted on body structure, and three rollers (the upper roller, the center roller, Lower roller), which are mounted on the sliding door side. The system is different from a swing door, rotated by hinge axis. To set up sliding door layout for better performance, predict operating force is one of the main factors, But The door moving trace is on three-dimension, hard to calculate and predict. So in this study, it is an object to analyze the impact between the main factors affecting the performance of the closing and open performance and the sliding door through the study formula and a layout scheme for ensuring the best operating performance of the sliding doors.
Technical Paper

The Study for the Improvement of On-Center Feel with MTS Technique

2007-04-16
2007-01-0990
On-center feel is a multivariate problem that a performance is represented using put-together several sub-characteristics such as torque feedback, response, torque linearity, hysteresis, returnability, etc. For the improvement of a multivariate problem, multi objective optimization should be carried out. However each characteristic which ignores correlation between characteristics is usually optimized up to now. The objective of this research, Mahalanobis Taguchi System (MTS) technique is grafted to on-center steering feel to obtain the efficient improvement. MTS technique can optimize the unified on-center index which is generated in consideration of correlation between characteristics. In this research, first an effective value of MTS technique is verified with on-center steering feel which has the multivariate characteristic. Second, on-center steering feel is improved using MTS technique and Design of Experiments (DOE).
Technical Paper

The Simulation of ABS Stopping Distance

2011-04-12
2011-01-0570
Recently, customers have been demanding increased safety features in cars. Meanwhile, auto magazines now seek to publish the stopping distance. Further, the car development period has become shorter. For all these reasons, a precise estimation of the ABS stopping distance has grown important. A few steps that can be taken to improve accurate simulations of the ABS stopping distance are as follows: 1 Development of the tire hysteresis concept, its confirmation by test results, and then its application. 2 Free diagram development of the wheel combining ideal braking force, real braking force, and specific tire quality. 3 Modeling of HCU. 4 Application of ABS and EBD logic. 5 Application of booster characteristic to the section of early braking.
Technical Paper

The Procedure for Improving R&H Performance of the New 2010 Hyundai Sonata by Modal Parameter Modification of Its Body

2010-04-12
2010-01-1136
Various deformation shapes of the vehicle body were investigated for the purpose to establish vehicle body's performance criteria which correlates well to handling performance and ride comfort. Using CAE tool, the dynamic behavior of a structure by its modal parameter can be described instead of by its nodes and elements. Each modal characteristic in a dynamic system is reduced by its modal stiffness, its modal mass and its damping parameter in the model. This technology offers not only computational efficiency but also parametric model enabling easy what-if simulation. This reduced model can be obtained by modal test as well as simulation of full FE model. It was also investigated that which mode is sensitive to ride or handling performance using the parameterized model. The body stiffness of the brand new 2010 SONATA was improved on reference to the sensitivity analysis. The ride and handling performance of the 2010 SONATA were verified by computer simulation and vehicle field test
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Technical Paper

The Optimization of Vehicle Performances Using Dynamic Models with Two Steps

2015-03-10
2015-01-0028
This paper presents an industrial application of the Analytical Target Cascading (ATC) methodology to the optimal design of commercial vehicle steering and suspension system. This is a pilot study about the suspension and steering design of a semi medium bus, whose objective is to develop and introduce an ATC methodology to an automobile development process. In the conventional process, it is difficult not only to find design variables which meet the target of Ride and Handling (R&H) performance using a detailed full car model, but also to figure out the interrelation between the vehicle and its subsystems. In this study, ATC methodology is used in order to obtain the optimal values such as geometric characteristics satisfying both the vehicle's R&H target and the subsystem (suspension and steering system) 's target.
Technical Paper

The Experimental Study on the Body Panel Shape to Minimize the Weight of the Damping Material

2003-05-05
2003-01-1715
The experimental study on the automotive body panel shape has researched a way to reduce the damping material. Among each differently designed panel shapes, the curved panel shape, with high rigidity, or dynamic stiffness, and uneven deformation mode, has found to most reduce the vibration energy and damping material application. This study shows how could the panel shape influence the NVH performance, which would be measured according to several specifically designed panel shapes in order to compare with the conventional bead panel. And this research proposes the way to optimize the damping material to minimize its weight.
Technical Paper

The Development of Lab-Simulation Test to Accelerate the Durability Validation of Engine Mounting and Wiring Harness

2003-03-03
2003-01-0949
With the advent of cars with computerized engines, drivers sometimes suffer discomfort with “check engine” light problem, and as a result, insist on increasing levels of reliability in their cars. Hence, reliability of the wiring harness has become a very important automotive design characteristic. On one hand, the more secure an engine mounting system is, the more stable the engine wiring harness is. In order to enhance their durability, car manufacturers need to perform many validation tests during the development phase which involves a lot of time and cost. In this study, a newly developed lab-simulation test is proposed to qualify the design of engine mounting and engine wiring early in the design cycle and reduce time and expense. The lab-simulation test has contributed to a significant cost and time reduction and has shown good correlation to the original proving ground test.
Technical Paper

The Development of Gear Tooth Micro Geometry Analysis Method for the Transmission Gear Noise Robustness

2019-03-25
2019-01-1414
Transmission error has been well known as the main source of excitation about transmission gear whine noise. To minimize transmission error in the gear system, various analysis methods have been studied and applied for long time. Many researchers were focused on gear micro geometry to achieve the low level of transmission error. But, if the gear is misaligned by several factors such as clearance and manufacturing tolerance error, then the gear noise can rapidly and unexpectedly be increased. To overcome this problem, this new analysis method has been developed and introduced. A transmission system simulation model was constructed, which considers various factors of transmission components such as clearance, stiffness and so on. The deformation and vibration characteristics of finite element models were validated by making comparison with frequency response function experiment.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

The Analysis of Brake Squeal Noise Related to the Friction Properties of Brake Friction Materials

2019-09-15
2019-01-2132
The friction properties related to squeal noise was analyzed with the development histories and simplified computational method. Firstly, the development histories were investigated especially focusing on the case which the friction materials were modified to improve squeal noise occurrence. Based on the histories, the friction properties of selected friction materials were newly measured using dynamometer. The average friction coefficient levels, torque oscillations, the increment of friction coefficient during full-stop, and etc. were compared with the squeal noise occurrence, and the results showed that increase of friction properties cause production of squeal noise. The result suggested that the size of friction energy was important factors related to triggering the squeal noise. Also, the contact conditions between rotor disc and friction materials were significant factors deciding the noise occurrence.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Technical Paper

Study of Sealing Mechanism to Prevent Oil Leakage for the Thermoplastic Cylinder Head Cover

2007-04-16
2007-01-0566
Most of car makers nowadays produce Cylinder Head Cover with Thermoplastic to get the benefit of weight and cost reduction. The production of Cylinder Head Cover with Thermoplastic brings a number of benefits such as enhancement in productivity, design freedom, integration with other parts and reduction in weight. However, NVH characteristics, sealing performance issues possibly caused by design of cover and gasket and loss of properties of materials when used for long-term period still remain as critical tasks to be solved. Especially in case of car OEMs strongly insist that we have to meet their severe specifications requirements so as to satisfy their customers' growing demand. Sealing performance is one of the core factors, which require continuous effort and studies to meet the OEM's specifications.
Journal Article

Study of Optimizing Sliding Door Efforts and Package Layout

2017-03-28
2017-01-1302
A sliding door is one of the car door systems, which is generally applied to the vans. Compared with swing doors, a sliding door gives comfort to the passengers when they get in or out the car. With an increasing number of the family-scale activities, there followed a huge demand on the vans, which caused growing interests in the convenience technology of the sliding door system. A typical sliding door system has negative effects on the vehicle interior package and the operating effort. Since the door should move backward without touching the car body, the trajectory of the center rail should be a curve. The curve-shaped center rail infiltrates not only the passenger shoulder room, but also the opening flange curve, which results in the interior package loss. Moreover, as the passenger pulls the door outside handle along the normal direction of the door outer skin, the curved rail causes the opening effort loss.
X