Refine Your Search

Topic

Search Results

Journal Article

System Approach for Compliance with Full Load Targets on a Wall Guided Diesel Combustion System

2008-04-14
2008-01-0840
Low temperature combustion concept as HCCI is one of the most promising research ways to comply future emission regulations of Diesel passenger vehicles. IFP promoted this concept with NADI™ (Narrow Angle Direct Injection) combustion design whose original approach lies on a fuel spray guided by the bowl central tip to the re-entrant. For full load operating range, one of the key issue for success is to use as much as possible available air in the combustion chamber in order to reach low value of air fuel ratio, and therefore high value of specific power and specific torque. In this study, engine tests on a single cylinder engine with NADI™ concept are performed at full load; 3-D calculations as well as air/fuel mixing process visualizations in a constant volume vessel with optical access allowed to establish criteria for helping future combustion system design for full load operation.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Six Degrees Crankshaft Individual Air Fuel Ratio Estimation of Diesel Engines for Cylinder Balancing Purpose

2006-04-03
2006-01-0013
In the context of modern engine control, one important variable is the individual Air Fuel Ratio (AFR) which is a good representation of the produced torque. It results from various inputs such as injected quantities, boost pressure, and the exhaust gas recirculation (EGR) rate. Further, for forthcoming HCCI engines and regeneration filters (Particulate filters, DeNOx), even slight AFR unbalance between the cylinders can have dramatic consequences and induce important noise, possible stall and higher emissions. Classically, in Spark Ignition engine, overall AFR is directly controlled with the injection system. In this approach, all cylinders share the same closed-loop input signal based on the single λ-sensor (normalized Fuel-Air Ratio measurement, it can be rewritten with AFR as they have the same injection set-point.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Potential to Improve Specific Power Using Very High Injection Pressure In HSDI Diesel Engines

2009-04-20
2009-01-1524
Engine downsizing is one of the most promising engine solutions to improve efficiency, but requires higher specific performance because of a lower engine displacement. The study is based on experimental work performed with an IFP prototype single cylinder engine, representative of passenger car applications. This engine enables very high specific power, with a high level of thermal and mechanical constraints. Tests were carried out on both full load and part load operation with a prototype common rail equipment capable of very high fuel pressure (up to 250 MPa). Results show that increasing fuel flow rate using fuel injection pressure instead of increasing nozzle hole diameter is more advantageous at full load, mainly because a lower nozzle hole diameter improves air entrainment. Benefits observed with increased injection pressure are enhanced when associated with upgraded engine thermo-mechanical limits, and advanced turbo charging system.
Technical Paper

Port Fuel Injection and Combustion Simulation of a Racing Engine

2003-05-19
2003-01-1845
The short time available for injection and mixing in high-speed engines requires an accurate modeling of the fuel related processes to obtain a valuable in-cylinder charge description, and then a good combustion performance prediction. An advanced version of the KMB code of IFP has been used to compute a racing engine. It includes a fitted on experiments spray model, a comprehensive wall-film model, the AKTIM ignition and ECFM combustion models. A major difficulty was the necessity to compute numerous cycles before reaching a cycle-independent solution. A procedure has been defined to minimize calculation time. Another difficulty was the high concentration of liquid in some zones, which requested a careful meshing. Effects such as the influence of the strong acoustic waves on the spray dynamic, the wall wetting effects on the engine time response, injector position on fuel distribution in the cylinder, charge homogeneity on the combustion process have been investigated.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

On the origin of Unburned Hydrocarbon Emissions in a Wall Guided, Low NOx Diesel Combustion System

2007-07-23
2007-01-1836
The formation mechanisms of unburned hydrocarbons (HC) in low NOx, homogeneous type Diesel combustion have been investigated in both standard and optical access single cylinder engines operating under low load (2 and 4 bar IMEP) conditions. In the standard (i.e. non-optical) engine, parameters such as injection timing, intake temperature and global equivalence ratio were varied in order to analyse the role of bulk quenching on HC emissions formation. Laser-induced fluorescence (LIF) imaging of in-cylinder unburned HC within the bulk gases was performed on the optical-access engine. Furthermore, studies were performed in order to ascertain whether the piston top-land crevice volume contributes significantly to engine-out HC emissions. Finally, the role of piston-top fuel films and their impact on HC emissions was studied. This was investigated on the all-metal engine using two fuels of different volatilities.
Technical Paper

Observer Design for Torque Balancing on a DI Engine

2004-03-08
2004-01-1370
Torque balancing for diesel engines is important to eliminate generated vibrations and to correct injected quantity disparities between cylinders. The vibration phenomenon is important at low engine speed and at idling. To estimate torque production from each cylinders, the instantaneous engine speed from the crankshaft is used. Currently, an engine speed measurement every 45° crank angle is sufficient to estimate torque balance and to correct it in an adaptive manner by controlling the mass injected into each cylinder. The contribution of this article is to propose a new approach of estimation of the indicated torque of a DI engine based on a nonstationary linear model of the system. On this model, we design a linear observer to estimate the indicated torque produced by each cylinder. In order to test it, this model has been implemented on a HiL platform and tested on simulation and with experimental data.
Technical Paper

New Knock Localization Methodology for SI Engines

2003-03-03
2003-01-1118
A methodology has been developed to determine, for every cycle on which significant knock is detected, the area in which self-ignition occurs. This methodology is based on the exploitation by a dedicated algorithm of a minimum of 4 simultaneous combustion chamber pressure measurements. The algorithm has been first tested on the results of engine knocking simulation, then applied with success on a single-cylinder engine equipped with classical pressure transducers and with an instrumented cylinder head gasket developed for this application. The results obtained with these two kinds of transducers on several engine configurations and tunings are similar. If the timing and intensity of knock events depend on all engine parameters, its location is especially sensitive to such design parameters as fluid motion into the combustion chamber and spark plug position.
Technical Paper

Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators

2009-04-20
2009-01-0675
Due to increasingly stringent regulations, reduction of pollutant emissions and consumption are currently two major goals of the car industry. One way to reach these objectives is to enhance the management of the engine in order to optimize the whole combustion process. This requires the development of complex control strategies for the air and the fuel paths, and for the combustion process. In this context, engine 0D modelling emerges as a pertinent tool for investigating and validating such strategies. Indeed, it represents a useful complement to test bench campaigns, on the condition that these 0D models are accurate enough and manage to run quite fast, eventually in real time. This paper presents the different steps of the design of a high frequency 0D simulator of a downsized turbocharged Port Fuel Injector (PFI) engine, compatible with real time constraints.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

In-Cylinder Measurements of Fuel Stratification in a Twin-Spark Three-Valve SI Engine

2004-03-08
2004-01-1354
In order to take advantage of different properties of fuel components or fractions, a new concept of fuel stratification has been proposed by the authors. This concept requires that two fractions of standard gasoline (e.g., light and heavy fractions) or two different fuels in a specially formulated composite be introduced into the cylinder separately through two separate intake ports. The two fuels will be stratified into two regions in the cylinder by means of strong tumble flows. In order to verify and optimize the fuel stratification, a two-tracer Laser Induced Fluorescence (LIF) technique was developed and applied to visualize fuel stratification in a three-valve twin-spark SI engine. This was realized by detecting simultaneously fluorescence emissions from 3-pentanone in one fuel (hexane) and from N,N-dimethylaniline (DMA) in the other fuel (iso-octane).
Journal Article

Impact of Fuel Properties on the Performances and Knock Behaviour of a Downsized Turbocharged DI SI Engine - Focus on Octane Numbers and Latent Heat of Vaporization

2009-04-20
2009-01-0324
Facing the CO2 emission reduction challenge, the combination of downsizing and turbocharging appears as one of the most promising solution for the development of high efficiency gasoline engines. In this context, as knock resistance is a major issue, limiting the performances of turbocharged downsized gasoline engines, fuel properties are more than ever key parameters to achieve high performances and low fuel consumption's levels. This paper presents a combustion study carried out into the GSM consortium of fuel quality effects on the performances of a downsized turbocharged Direct Injection SI engine. The formulation of two adapted fuel matrix has allowed to separate and evaluate the impacts of three major fuel properties: Research Octane Number (RON), Motor Octane Number (MON) and Latent Heat of Vaporization (LHV). Engine tests were performed on a single cylinder engine at steady state operating condition.
Technical Paper

Generating Thermal Conditions to Regenerate a DPF: Impact of the Reductant on the Performances of Diesel Oxidation Catalysts

2009-04-20
2009-01-1085
The influence of the type of fuel and the feeding means to a DOC, in order to regenerate a DPF, was investigated. Diesel fuel in cylinder late post-injection was compared to the injection in the exhaust line, through an exhaust port injector, of diesel fuel, B10 (diesel fuel containing 10% of esters) and gasoline. Diesel fuel exhaust injection resulted in a deteriorated conversion efficiency, while the incorporation of esters to the diesel fuel was demonstrated to have no influence. Gasoline exhaust injection led to less HC slip than diesel fuels. Temperature dynamics resulting from injection steps showed taught that the shorter the hydrocarbons (within the tested fuels), the slower the response. These differences can be caught by simple models, leading to interesting opportunities for the model-based control of the DPF inlet temperature during active regenerations.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Ethanol as a Diesel Base Fuel - Potential in HCCI Mode

2008-10-06
2008-01-2506
This work studies the potential of ethanol-Biodiesel-Diesel fuel blends in both conventional Diesel and HCCI combustion modes. First, ethanol based fuels were tested on a modern commercial multi-cylinder DI diesel engine. The aim of this phase was to assess how such fuels affect Diesel engine performances and emissions. These results indicate that low levels of PM and NOx emissions, with a contained fuel consumption penalty and with an acceptable noise level, are achievable when the Diesel-ethanol blends are used in combination with an optimized combustion control. Moreover, experiments with ethanol based blends were performed using a single cylinder engine, running under both early injection HCCI and Diesel combustion modes. Compared to a conventional fuel, these blends allow increasing the HCCI operating range and also lead to higher maximum power output in conventional Diesel combustion.
Technical Paper

Effects of Mechanical Turbo Compounding on a Turbocharged Diesel Engine

2013-03-25
2013-01-0103
This paper presents the simulation study on the effects of mechanical turbo-compounding on a turbocharged diesel engine. A downstream power-turbine has been coupled to the exhaust manifold after the main turbocharger, in the aim to recover waste heat energy. The engine in the current study is Scania DC13-06, which 6 cylinders and 13 litre in capacity. The possibilities, effectiveness and working range of the turbo compounded system were analyzed in this study. The system was modeled in AVL BOOST, which is a one dimensional (1D) engine code. The current study found that turbo compounding could possibly recover on average 11.4% more exhaust energy or extra 3.7kW of power. If the system is mechanically coupled to the engine, it could increase the average engine power by up to 1.2% and improve average BSFC by 1.9%.
X