Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System

2018-04-03
2018-01-0960
Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Transient Behavior of VOCs Emission and Particle Size Distribution during Active Regeneration of Diesel Particulate Filter Equipped Diesel Engine

2011-08-30
2011-01-2087
In order to reduce fine particle emission, a diesel particulate filter (DPF) has begun to be equipped to a diesel engine. During regeneration of DPF, nanoparticles are known to be formed downstream of DPF. VOCs emission during regeneration is of interest in view of toxicity and formation mechanism of nanoparticles. A heavy duty diesel engine equipped with DPF was investigated to measure particle and VOCs emissions using PTR-TOFMS (Proton Transfer Reaction - Time of Flight Mass Spectrometer). PTR-TOFMS is a new on-line mass spectrometer using chemical ionization and its application to engine exhaust measurements is new. During active regeneration of the DPF, fine particle emission was increased by nucleation. But VOCs as well as THC emissions increased prior to particle increase. After the regeneration the particle and VOCs emissions decreased immediately to the level of normal operation.
Journal Article

The Performance of Multi-Cylinder Hydrogen / Diesel Dual Fuel Engine

2015-09-06
2015-24-2458
Hydrogen can be produced by electrolyzation with renewable electricity and the combustion products of hydrogen mixture include no CO, CO2 and hydrocarbons. In this study, engine performance with hydrogen / diesel dual fuel (hydrogen DDF) operation in a multi-cylinder diesel engine is investigated due to clarify advantages and disadvantages of hydrogen DDF operation. Hydrogen DDF operation under several brake power conditions are evaluated by changing a rate of hydrogen to total input energy (H2 rate). As H2 rate is increased, an amount of diesel fuel is decreased to keep a given torque constant. When the hydrogen DDF engine is operated with EGR, Exhaust gas components including carbon are improved or suppressed to same level as conventional diesel combustion. In addition, brake thermal efficiency is improved to 40% by increase in H2 rate that advances combustion phasing under higher power condition. On the other hand, NOx emission is much higher than one of conventional diesel engine.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Journal Article

Simultaneous Improvement of Fuel Consumption and Exhaust Emissions on a Multi-Cylinder Camless Engine

2011-04-12
2011-01-0937
Further improvement in fuel consumption is needed for diesel engines to address regulatory requirement particularly for heavy duty diesel in Japan enforced in 2015, in addition to the compliance to the regulatory requirements for exhaust emission, which seems to be more stringent in future. The authors have participated in the project of “Comprehensive Technological Development of Innovative, Next-Generation, Low-Pollution Vehicles” organized by New Energy and Industrial Technology Development Organization (NEDO), and innovative devices such as multi stage boosting system, ultra high-pressure fuel injection system and variable valve actuation (camless) system had been developed in this project from a standpoint of simultaneous improvement of fuel consumption and exhaust emission. In camless system, intake and exhaust valves are driven by hydraulic pressure. So, fully flexible setting of opening and closure timings and lift of the intake and exhaust valves is possible.
Technical Paper

Numerical Simulation of In-Cylinder Particulate Matter Formation in Diesel Combustion by CFD Coupled with Chemical Kinetics Model

2019-12-19
2019-01-2277
A reduced chemical kinetic model of diesel fuel, which can be applied to computational fluid dynamics (CFD) simulation coupled with detailed chemistry using the CONVERGE software, is developed to simulate the particulate matter (PM) formation process. We analyzed the influence of varying intake oxygen concentrations and fuel composition on the polycyclic aromatic hydrocarbons (PAHs) and soot formation processes. When the intake oxygen concentration was decreased, no significant difference was observed in PAH formation associated with soot formation, and the soot mass generated after the peak was high. When the fuel contained high levels of aromatics and naphthene, the PAH and soot formation mass increased. These tendencies were in good agreement with experimental results [1].
Technical Paper

Numerical Calculation of Spray Mixing Process in a D.I. Diesel Engine and Comparison with Experiments

1995-02-01
950853
Three dimensional computational model has been developed to predict the macroscopic behavior of the fuel spray in D. I. diesel engines. The model was based on the KIVA-II code with modification of some submodels that it can deal with the observed phenomena such as liquid column near the nozzle tip and spray impingement on a wall. Firstly, this model was verified by comparing the prediction with the experimental results in a constant volume vessel. Secondly with application to a D.I. diesel engine, the detailed behavior of the spray in a combustion chamber was revealed. Moreover, the engine performance under different spray angles were discussed with the prediction of this model.
Technical Paper

NVH Experimental Analyses for an Engine Structure Model Assembled with Ordinary Tap Bolts and with Through Bolts

2003-05-05
2003-01-1732
A series of NVH experiments were performed for a set of single cylinder engine models made of aluminum, consisting of a cylinder head, a cylinder block and a bed-plate. Each has the same outer size of 150mm × 150mm; the different heights are 100mm, 200mm and 80mm respectively. Those dimensions were determined following the dimensions for a diesel engine in lightweight commercial vehicle with the bore size of 100mm and the crankshaft main bearing diameter of 60mm. We chose 112 of measuring points on the structure surfaces and performed a series of impact tests, for the following cases: (a) When the cylinder head and the bed-plate were fastened to the cylinder block by two sets of four ISO M10 tap-bolts, each with the lengths ℓ1 =117mm and ℓ2 =97mm. (b) When the cylinder head and the bed-plate were fastened to the cylinder block together by a set of four ISO M10 through-bolts of grip length ℓ3 =380mm.
Technical Paper

Measurement of Liquid Phase Penetration of vaporating Spray in a DI Diesel Engine

1997-05-01
971645
This paper introduced a very simple method to measure the liquid phase of spray in an optically accessible DI diesel engine. Particular attention was paid to easy usage and maintaining the compression ratio of the real engine. As a result, a less-expensive 4 W argon laser was used as the beam source and an E-10 high-speed camera was used for continuously observing the elastic-scatter liquid phase image. Meanwhile, the compression ratio can be kept as the real engines by this method. Through this method, the effects such as injection pressure, nozzle specification, intake air boost and temperature on liquid phase penetration before ignition were investigated. Reducing nozzle hole diameter decreased the length of the liquid phase. Increasing injection pressure hastened the evolution of liquid phase, while the liquid phase length varied complexly. Increasing intake air boost considerably shortened the liquid phase penetration and ignition delay.
Technical Paper

Investigation of Particulate Matter Formation in a Diesel Engine Using In-Cylinder Total Sampling and Thermal Desorption-GCMS/Carbon Analysis

2019-12-19
2019-01-2276
In-cylinder total sampling technique utilizing a single-cylinder diesel engine equipped with hydraulic valve actuation system has been developed. In this study, particulate matter (PM) included in the in-cylinder sample gas was collected on a quartz filter, and the polycyclic-aromatic hydrocarbons (PAHs) component and soot were subsequently quantified by thermal desorption-gas chromatograph mass spectrometry (TD-GCMS) and a carbon analyzer, respectively. Cylinder-averaged histories of PAHs and soot were obtained by changing the sampling timing. It was found that decreasing intake oxygen concentration suppresses in-cylinder soot oxidation, and the fuel with higher aromatic and naphthenic contents accelerates soot production.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust - 1st report: Validation and Unsteady Flow Structures

2010-04-12
2010-01-1010
Large eddy simulation based on high-performance computing technique was conducted to investigate the unsteady aerodynamic forces acting on a full-scale heavy duty truck subjected to sudden crosswind. The CFD results were applied to evaluate the effect of the unsteady external forces on a vehicle motion, as a first step toward a more reliable vehicle motion analysis. As the first report, the numerical method was validated on the DNW wind-tunnel data by comparing the time-averaged drag and lateral forces at various yawing angles up to 10 degrees. Then the method was applied to the case when the vehicle goes through the crosswind region. The time series of the aerodynamic forces were acquired and discussed through the visualization of instantaneous flow structures around the vehicle. It was observed that drastic undershooting and overshooting of the yawing moment acts on the vehicle during the rushing in and out process.
Technical Paper

Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine

1998-08-11
981929
Fuel injection rate pattern represents an important factor for emissions reduction. In this study, fuel spray photography, combustion photography and experimental data analysis indicate. 1) effect of pilot injection 2) effect of a gradual shaped injection profile using nozzle needle lift control 3) effect of a boot shaped injection profile using pressure control Common rail type fuel injection equipment was used in these experiments, and the engine was single cylinder naturally aspirated D.I. diesel engine. As a result, we found out that it is important to control the pre-mixed combustion for NOx reduction and to activate the diffusion combustion for smoke, and various fuel injection rate patterns we studied have similar effect on combustion and emissions at the most suitable condition respectively.
Technical Paper

An Observation and Analysis of the Combustion Under Supercharging on a DI Diesel Engine

1994-03-01
940844
Supercharging as the method of increasing the output of diesel engines has a long history. Recently, because the potential for lower exhaust emissions for a given power output, supercharging has been considered as a method to reach increasingly strict emissions standards. Some research investigating the effects of supercharging has shown favorable results in terms of emissions(e.g.[1][2][3] *). Also some fundamental studies have examined the effect of ambient pressures on the characteristics of spray and ignition in constant volume combustion borb[4][5][6][7]. However, for further improvement of combustion when utilizing supercharging, more detailed information inside of the combustion chamber is needed about the effects of supercharging on fuel spray and combustion. In order to gather this information, it is necessary to observe the processes within the combustion chamber of a supercharged engine.
Technical Paper

An Analysis of the Combustion of a DI Diesel Engine by Photograph Processing

1993-03-01
930594
To analyze the combustion phenomena of DI diesel engines in detail, the “cross-correlation method” and the “two-color method” have been applied to measure the combustion flame motion and the flame temperature, respectively by processing the high speed photographs. The purpose of this investigation is to study the effects of engine parameters such as pumping rate, injector nozzle hole size, and injection timing on combustion processes; particularly on flame motion and flame temperature. The results showed that the flame motion was more active during the injection period; and after the end of injection, the motion of flame was largely governed by the air swirl. Increasing fuel pumping rate and using a small hole area injector nozzle, caused the flame motion to become more active, especially during the injection period. The flame temperature was higher with both increased pumping rate and advanced injection timing.
Technical Paper

A Study of the Effects of Chamber Geometries on Flame Behavior in a DI Diesel Engine

1995-10-01
952515
An experimental study aiming to investigate the effects of combustion chamber geometry on combustion process has been carried out in an optically accessible DI diesel engine. The combustion processes of three different chamber geometries, included the production type, were revealed and the flame movement behaviors such as the distribution of flame velocity vectors and the averaged flame velocity inside and outside the combustion chamber were measured by means of a cross-correlation method. Meanwhile, an endoscope system was used to acquire information about the distribution of flames inside and outside the chamber. BY comparing the flame movement and distribution between different chambers and nozzle protrusions, the results showed that; The chamber geometry has significant effect on the flame velocity, the flame velocities of the reentrant chamber were larger than that of the dish chamber during expansion period.
X