Refine Your Search

Topic

Author

Search Results

Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Traffic accidents in rural area and assistance system for traffic safety

2001-06-04
2001-06-0243
An investigation based on human visual search functions was conducted into the causative factors of traffic accidents at clear intersections in rural areas. The results indicated that it is difficult for drivers to detect a vehicle traveling on a collision course because the vehicle remains in the same position in the driver's visual field. Two systems are introduced to assist drivers' visual searches. One system uses an image processing technique, and the other utilizes DGPS and IVC techniques. This paper presents the development of the assistance system.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Simulation Techniques for Determining Motorcycle Controllability Class according to ISO 26262

2018-10-30
2018-32-0060
The ISO 26262 standard specifies the requirement for functional safety of electrical and electronic systems within road vehicles. We have accumulated case studies based on actual riding tests by subjective judgment of expert riders to define a method for determining the controllability class (C class). However, the wide variety of practical traffic environments and vehicle behaviors in case of malfunction make it difficult to evaluate all C classes in actual running tests. Furthermore, under some conditions, actual riding tests may cause unacceptable risks to test riders. In Part 12 Annex C of ISO/DIS 26262, simulation is cited as an example of a technique for comprehensive evaluations by the Controllability Classification Panel. This study investigated the usefulness of mathematical simulations for evaluating the C class of a motorcycle reproducing a malfunction in either the front or rear brakes.
Technical Paper

Simplifying the Structural Design of the Advanced Pedestrian Legform Impactor for Use in Standardized Testing

2018-04-03
2018-01-1049
The advanced Pedestrian Legform Impactor (aPLI) incorporates a number of enhancements for improved lower limb injury prediction capability with respect to its predecessor, the FlexPLI. The aPLI also incorporates a simplified upper body part (SUBP), connected to the lower limb via a mechanical hip joint, that expands the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also in high-bumper cars.As the aPLI has been developed to be used in standardized testing, further considerations on the impactor’s manufacturability, robustness, durability, usability, and repeatability need to be accounted for.. The aim of this study is to define and verify, by means of numerical analysis, a battery of design modifications that may simplify the manufacturing and use of physical aPLIs, without reducing the impactors’ biofidelity. Eight candidate parameters were investigated in a two-step numerical analysis.
Technical Paper

Safety Evaluation on Fuel Cell Stacks Fire and Toxicity Evaluation of Material Combustion Gas for FCV

2007-04-16
2007-01-0435
Fuel cell vehicles represent a new system, and their safety has not yet been fully proved comparing with present automobile. Thorough safety evaluation is especially needed for the fuel system, which uses hydrogen as fuel, and the electric system, which uses a lot of electricity. The fuel cell stacks that are to be loaded on fuel cell vehicles generate electricity by reacting hydrogen and oxygen through electrolytic polymer membranes which is very thin. The safety of the fuel and electric systems should also be assessed for any abnormality that may be caused by electrolytic polymer membranes for any reasons. The purpose of our tests is to collect basic data to ultimately establish safety standards for fuel cell stacks. Methanol pool flame exposure tests were conducted on stationary use fuel cell stacks of two 200W to evaluate safety in the event of a fire.
Technical Paper

Research on the Evacuation Readiness of Bus Crews and Passengers - Investigation of the Effect of a New Type of Exit

1996-10-01
962210
This research was conducted to propose appropriate emergency exits for bus crews and passengers. We developed the improved emergency exit based on the results of current bus exit performance tests, and investigated its effect on evacuation readiness. Tests employing human subjects were conducted to measure the time required to evacuate using the improved emergency exit. The subjects' psychological responses during evacuation were also studied to identify any evacuation problems. We also carried out tests of group evacuation through windows in a current bus to obtain the relationship between the evacuation time, the number of evacuation subjects, and the number of windows. The results show that the improved emergency exit is effective in improving evacuation readiness. It is clear that there is a positive correlation between the evacuation time, the number of subjects, and the number of windows.
Technical Paper

Relationships Between Occupant Motion and Seat Characteristics in Low-Speed Rear Impacts

1999-03-01
1999-01-0635
Sled tests were conducted with some seats which had different characteristics to understand the relationships between occupant motion and seat characteristics in lowspeed rear impacts. The position of the head restraint and the stiffness distribution of the seatback were selected as parameters expressing seat characteristics. Volunteer’s cervical vertebral motions were photographed with an x-ray cineradiographic system at a speed of 90 frames/sec as well as the visible motions of dummy’s and volunteer’s were recorded. The results indicated the head restraint position and upper seatback stiffness influenced occupant motions. Correlations between visible motions, such as ramping-up, retraction and extension, were also analyzed and some correlations were found.
Technical Paper

Reconsideration of injury criteria for pedestrian subsystem legform test~Problems of rigid legform impactor

2001-06-04
2001-06-0206
The legform impactor proposed by EEVC/WG17 is composed of a rigid thigh segment and a rigid lower leg segment. Human bone, however, has flexibility, causing some differences between the EEVC rigid legform impactor and the human leg. This research analyzes the influence of the differences (rigid versus flexible) on the injury criteria. It also reanalyzes the upper tibia acceleration with regard to the fracture index. The rigid legform impactor cannot simulate bone bending motion, so the injury criteria should consider the legform rigidity. It means the injury criteria need to include the bone bending effect. From several PMHS test results, the shearing displacement becomes 23 mm and 20 degrees for bending angle including the bone bending effect. However, the bone bending effect will change with the loading conditions. Therefore, to establish a certain injury criteria for a rigid legform impactor is impossible. To solve this problem, a flexible legform impactor seems to be needed.
Technical Paper

Performance Evaluation of Impact Responses of the Sid-Iis Small Side Impact Dummy

1998-05-31
986149
A series of side impact tests have been conducted to evaluate the biofidelity of the latest prototype of a small side impact dummy, SID-II s β+(plus). The tests were lateral impacts for the thorax, shoulder, and pelvis, as well as lateral drops for the head, thorax, abdomen, and pelvis. The test data were compared to the response target corridors that were estimated by scaling the cadaver test data to a smaller occupant. The test results show that the head, should, thorax, abdomen and pelvis of the SID-II s β+ either completely or close to meets the response target corridors, and that its biofidelity has been improved from the previous dummy SID II s B-prototype.
Technical Paper

Japanese research activity on future side impact test procedures

2001-06-04
2001-06-0155
This paper summarizes a future side impact test procedure based on the Japanese presentation at the recent IHRA Side Impact WG meeting. Under current Japanese regulations, the MDB specifications and test procedures were determined based on a market study more than ten years ago. Thus, they may not reflect current automobile characteristics, the actual accident situation, and crash test results. In this study (1) the vehicle types, velocity of striking and struck vehicles, body injury regions, causes of injuries, etc., are reviewed with reference to the latest Japanese side impact accident data. The occupant percentages for the non-struck-side, rear seat and for female occupants as well as the injury levels were analyzed. (2) To determine the MDB specifications, based on data from passenger car models registered in 1998, the curb mass, geometry and stiffness were examined. (3) For factorial analysis, side impact tests were performed as for real accidents.
Technical Paper

JamaS Study on the Location of In-Vehicle Displays

2000-11-01
2000-01-C010
JAMA (Japan Automobile Manufactures Association, Inc.)'s guideline for car navigation systems is being decided on displayed the amount of information while driving. The position of a display and the estimated equation, which could be applied from a passenger car to a heavy truck, was studied. The evaluation index was the distance which drivers could become aware of a preceding vehicle by their peripheral vision, because car accidents while drivers glance at an in- vehicle display are almost the rear end collisions. As the results, the lower limit of a position of an in-vehicle display for a passenger car was 30 degrees, and a heavy truck was 46 degrees.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Technical Paper

Injury Pattern and Tolerance of Human Pelvis Under Lateral Loading Simulating Car-pedestrian Impact

2003-03-03
2003-01-0165
Numerous studies of pelvic tolerance to lateral impact aimed at protecting car occupants have been conducted on Post Mortem Human Subjects (PMHSs) in a sitting posture. However, it remains unclear whether or not the results of these studies are relevant when evaluating the injury risk to walking pedestrians impacted by a car. Therefore, the first objective of the present study is to determine the injury tolerance and to describe the injury mechanisms of the human pelvis in lateral impacts simulating car-pedestrian accidents. The second objective is to obtain data for validation of mathematical models of the pelvis. In-vitro experiments were conducted on twelve PMHSs in simulated standing position. The trochanter of each PMHS was hit by a ram at speed of 32 km/h, and the pelvic motion was constrained by a bolt. This type of pelvic constraint is difficult to simulate in mathematical models.
Technical Paper

Injury Pattern and Response of Human Thigh under Lateral Loading Simulating Car-Pedestrian Impact

2004-03-08
2004-01-1603
The main objective of the present study is to determine experimentally the injury patterns and response of the human thigh in lateral impacts simulating more closely the real impact conditions in car-pedestrian accidents. We conducted in-vitro experiments on thirteen thighs of eight completely intact Post Mortem Human Subjects (PMHSs). The thigh was hit by a ram at a speed of 35 km/h at the mid-shaft of the femur in each completely intact PMHS. Since the effect of cumulative injuries should be avoided, each thigh was impacted only once. Three impact energies were used; 450J, 600J and 700J. The PMHS motion was not constrained so as to simulate the walking posture of a pedestrian. We analyzed the peak values of the impact force of the ram and the femur acceleration. Injury was assessed by dissecting the lower extremities.
Technical Paper

Improvement of Foot FE Model Based on the Movement of Bones during Heel Impact

2004-03-08
2004-01-0313
Frontal vehicle collisions often result in foot injury of the front seat occupant. Therefore, it is very important to understand the mechanism of the foot injury. For that purpose, several impact experiments have been conducted using a partial human lower extremity. In addition, recently several impact response analyses using a human FE model have been conducted to understand the mechanism. In the present circumstances, a verified FE model is needed, and the verification of kinematical biofidelity is very important in the first place. In this connection, a foot FE model (based on an existing human FE model) was improved to create a foot FE model, which can be used for study of foot injury mechanism in this research. And the kinematics of foot bones of the model was verified by comparing the bone movements of the FE model with the movement of human foot during heel impact.
Technical Paper

Improvement of Flame Exposure Test for High Pressure Hydrogen Cylinders to Achieve High Reliability and Accuracy

2006-04-03
2006-01-0128
To achieve a method for flame exposure testing of high-pressure cylinders in automobiles that allows fair evaluations to be made at each testing institute and also provides high testing accuracy, we investigated the effects of the flame scale of the fire source, the fuel type, the shape of the pressure relief device shield, and the ambient temperature through experiments and numerical simulation. We found that, while all of these are factors that influence evaluation results, the effects of some factors can be reduced by increasing the flame size. Therefore, a measurement technique to quantitatively determine the flame size during the test is required. Measuring temperatures at the top of each cylinder is a candidate technique. Furthermore, flame exposure tests to be conducted on cylinders as single units must ensure safety during a vehicle fire.
Technical Paper

Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles

2006-04-03
2006-01-0129
In this study, we evaluated the fire safety of vehicles that use compressed hydrogen as fuel. We conducted fire tests on vehicles that used compressed hydrogen and on vehicles that used compressed natural gas and gasoline and compared temperatures around the vehicle and cylinder, internal pressure of the cylinder, irradiant heat around the vehicle, sound pressure levels when the pressure relief device (PRD) was activated, and damage to the vehicle and surrounding flammable objects. The results revealed that vehicles equipped with compressed hydrogen gas cylinders are not more dangerous than CNC or gasoline vehicles, even in the event of a vehicle fire.
X