Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

The performance of diesel engine oil using ashless anti-wear additive and detergent

2023-09-29
2023-32-0027
To comply with increasingly strict emission regulations, diesel vehicles are equipped with Diesel Particulate Filters (DPF) to capture fine particulate matter (PM) from exhaust gas. However, due to the limited capacity of DPF to capture soot, periodic regeneration processing is required to burn it off. The ash created by metal-based additives in engine oil accumulates in DPF, leading to issues such as increased regeneration frequency and decreased fuel efficiency. To solve this problem, researchers have developed diesel engine oil with reduced ash content. However, the authors are taking it a step further and developing a diesel engine oil without metal-based detergents and anti-wear additives, for even more significant environmental impact reduction. This paper describes the development of an ashless engine oil with DH-2 performance, the effects of the developed engine oil on DPF, and the results of engine and actual field tests.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The IP Filter, a DOC-Integrated DPF, for an Advanced PM Aftertreatment System (2): An Evaluation of Fundamental Performance

2007-04-16
2007-01-0654
DPR consists of a multiple fuel-injection system, an electronic engine control unit, and a DPR Cleaner. The DPR cleaner is one assembly unit consisting of a DOC, a catalyzed DPF, and an exhaust silencer. Thus, DPR is a system developed to achieve healthy operation of a DPF with active regeneration regardless of engine operating conditions. The IP Filter was developed to improve the DPR cleaner by reducing the size of the unit and shortening the regeneration time. Both the DOC and DPF are integrated into one unit structure. The IP Filter has open-ended cells on the front face unlike a conventional wall-flow DPF. Instead, the plugs are positioned at the interface between the DOC and DPF. On the rear face of the IP Filter, plugs are installed at the same positions as those of a conventional DPF. The DOC substrate of the IP Filter is made of highly porous, straight honeycomb, the same as that of DPF.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Technical Paper

The Effect of Ashless Additives for Non-Phosphorus and Non-Ash Engine Oil on Piston Detergency

2015-09-01
2015-01-2031
Recently, deposition of ash derived from engine oil on the surface of a diesel particle filter (DPF) has been reported to worsen the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst and reduces the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus and non-ash engine oil (NPNA) that does not contain metal-based detergents and zinc dialkyldithiophosphate (ZnDTP). We performed a performance test for NPNA using an actual engine and reported that the piston detergency and anti-wear performance of NPNA were sufficiently high. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

The Development of Lubricating Oils for Rotary Racing Engines

1992-10-01
922375
In order to achieve the highest power output and lowest fuel consumption for the rotary engine in endurance race such as Le Mans, two types of lubricating oils were developed by conducting a single - rotor engine test at the rotational speed of 7500 rpm under full load. One was the engine oil for the lubrication of the combustion chamber. The other was a so - called system oil for lubrication of the engine system outside the combustion chamber. The conclusions obtained from the development are as follows: 1) Engine oil for the combustion chamber The engine oil greatly influences spitback phenomenon1) which can cause rotary engine trouble in an endurance race. The spitback phenomenon is decreased by the decrease of carbonaceous deposit and ash in the apex seal grooves.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Temperature Measurements of Combustion Gas in a Spark Ignition Engine By Infrared Monochromatic Pyrometry

1989-11-01
891258
Instantaneous temperature of in-cylinder gas provides a lot of useful and local information for analyzing the combustion process in an internal combustion engine. From the standpoint of applicability to a practical engine, the infrared monochromatic radiation pyrometry required only a single optical window is considered to be more suitable comparing with the conventional infrared absorption-emission pyrometry with two optical windows. Then, the former pyrometer is used to measure the mean gas temperatures averaged on an optical path (or cylinder diameter) of a spark ignition engine connected to a prechamber with a torch nozzle of various area sizes. These measured temperature-crankangle diagrams not only clarify the influences of torch jet flow on the combustion processes, but also correspond well to the heat release rates calculated from the pressure diagrams.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Study of Lower Viscosity Motorcycle Engine Oils for Fuel Saving-Anti-fatigue Performance-

2011-11-08
2011-32-0634
1 Fuel savings by engine oil have been requested for two-wheeled vehicles from the viewpoint of environmental issues. In four-wheeled vehicles, reduction of oil viscosity and addition of friction modifiers have been effective in improving fuel efficiency. However, direct application of engine oil for four-wheeled vehicles to two-wheeled vehicles is difficult. In a four-cycle two-wheeled vehicle, the transmission, gears, and a wet clutch system are imbedded within the engine1). Engine oil must display a remarkable performance as it is required to function as transmission oil and to improve anti-metal fatigue life and clutch performance2), 3). If fuel efficiency is improved by reducing the viscosity of engine oil used in two-wheeled vehicles, the fatigue life tends to worsen. Therefore, reduction in oil viscosity is difficult to achieve.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

State-of-the-Art; Hino High Boosted Diesel Engine

1993-11-01
931867
In the Japanese heavy duty truck market, demands of improved fuel economy and lighter vehicles to increase load capacity, and further improvements in emissions are constantly increasing. To satisfy these requirements, basically a smaller sized and higher boosted diesel engine is effective, because such an engine has a compact size and light weight, and shows improved fuel consumption due to a relatively lower frictional loss. On the basis of this concept Hino introduced the original EP100 in 1981 as the first Japanese turbocharged and air to air charge-cooled engine. Since then Hino has made many efforts to improve the engines and develop new technologies.
Technical Paper

Research on Low-Friction Properties of High Viscosity Index Petroleum Base Stock and Development of Upgraded Engine Oil

1995-02-01
951036
High viscosity index(HVI) petroleum base stock, with excellent temperature-viscosity characteristics, oxidation resistance, and low-evaporation properties, offers advantages as the base stock for high fuel economy engine oils, particularly because of its low-friction properties in the boundary and/or “E.H.L (Elastohydrodynamic Lubrication)” area due to its rheological characteristics. This research evaluated HVI base stock's low-friction properties. Upgrading the oil from 5W-30 to 5W-20 was also investigated. The friction properties of the HVI base stock were measured by a unit friction platform. The results show a 28% reduction in friction coefficient compared with the conventional, solvent refined oil, which is attributable to the high-pressure viscosity of the base oil.
Technical Paper

Regional Trade and Emission Gas in Asian Automobile Industry

2001-11-12
2001-01-3761
This paper is an attempt to estimate the traffic demand of private vehicles in the Philippines and Thailand toward 2030. Estimation of road traffic volume is one of the most important elements for determining fuel consumption and emission gas levels. The level of passenger car ownership is still low, but there has been a distinct shift toward passenger cars due to the lack of mass transport. In Asian countries, inspection and maintenance and emission standards are the most important policy measures. The projections of car stock are evaluated as the emissions of PM, CO and NOx by applying these policy measures in the case of Thailand.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
X