Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Waza (Skilled Craftsmanship) that Created RA272 Exhaust Pipe used in Formula 1 Race in 1960's

2008-04-14
2008-01-0547
This study attempted to faithfully reproduce and scientifically analyze the process of formation of the exhaust pipe of the winning RA272 engine used in Formula One in the 1960's, using the waza (skills) employed in its fashioning, which have been handed down by its makers. This analysis showed that the manual bending method, used to create the RA272 exhaust pipe, which was filled with sand and bent while being flame-heated, without the use of figures or molds, was superior to the mechanical bending method of that time, from the standpoint of short-term period of production. We have determined that the pipe displays that the microstructure of the material remains stable, even at exhaust temperatures of 700°C to 900°C, and that useful information on the pipe's shape stability and mechanical strength has been provided.
Technical Paper

Validity of Low Ventilation for Accident Processing with Hydrogen Leakage from Hydrogen-Fuelled Vehicle

2013-04-08
2013-01-0211
Appropriate emergency response information is required for first responder before hydrogen fuel cell vehicles will become widespread. This paper investigates experimentally the hydrogen dispersion in the vicinity of a vehicle which accidentally releases hydrogen horizontally with a single volumetric flow of 2000 NL/min in the under-floor section while varying cross and frontal wind effects. This hydrogen flow rate represents normally a full throttle power condition. Forced wind was about maximum 2 m/s. The results indicated that the windward side of the vehicle was safe but that there were chiefly two areas posing risks of fire by hydrogen ignition. One was the leeward side of the vehicle's underbody where a larger region of flammable hydrogen dispersion existed in light wind than in windless conditions. The other was the area around the hydrogen leakage point where most of the leaked hydrogen remained undiffused in an environment with a wind of no stronger than 2 m/s.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Two-Phase Lattice Boltzmann Simulations and In-Situ Measurements with X-ray CT Imaging on Liquid Water Transport in PEFCs

2011-04-12
2011-01-1347
Water management is one of the key factors to ensure high performance, cold start and durability of polymer electrolyte fuel cells (PEFCs), and it is important to understand the behavior of liquid water in PEFCs. X-ray computed tomography (X-ray CT) imaging and the two-phase lattice Boltzmann method (two-phase LBM) are applied to analyze the mechanism of water transport in the gas diffusion layers (GDLs) and the gas channels in generating PEFCs. The results of the two-phase LBM are compared with those of X-ray CT imaging, and are found to agree qualitatively in that water is discharged along the hydrophilic channel wall and accumulated in the GDL, especially under the rib. The effects of the wettability of the GDLs, and of the gas channels, the diameter of the carbon fibers, and the porosity of the GDLs on water discharge from the GDLs and gas channels are also investigated.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for FCV on Fast Filling (2nd Report)

2008-04-14
2008-01-0463
If a compressed hydrogen tank for vehicles is filled with hydrogen gas more quickly, the gas temperature in the tank will increase. In this study, we conducted hydrogen gas filling tests using the TYPE 3 and TYPE 4 tanks. During the tests, we measured the temperature of the internal liner surface and investigated its relationship with the gas temperature in the tank. We found that the gas temperature in the upper portion of the TYPE 4 tank rose locally during filling and that the temperature of the internal liner surface near that area also rose, resulting in a temperature higher than the gas temperature at the center of the tank. To keep the maximum temperature in the tank below the designed temperature (85°C) during filling and examine the representative tank internal temperatures, it is important to examine filling methods that can suppress local rises of tank internal temperature.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Journal Article

The Predictive Simulation of Exhaust Pipe Narrow-band Noise

2015-04-14
2015-01-1329
A method of predictive simulation of flow-induced noise using computational fluid dynamics has been developed. The goal for the developed method was application in the vehicle development process, and the target of the research was therefore set as balancing the realization of a practical level of predictive accuracy and a practical computation time. In order to simulate flow-induced noise, it is necessary to compute detailed eddy flows and changes in the density of the air. In the research discussed in this paper, the occurrence or non-occurrence of flow-induced noise was predicted by conducting unsteady compressible flow calculation using large eddy simulation, a type of turbulence model. The target flow-induced noise for prediction was narrow-band noise, a type of noise in which sound increases in specific frequency ranges.
Technical Paper

Test of Vehicle Ignition Due to Hydrogen Gas Leakage

2006-04-03
2006-01-0126
The distribution of concentrations of hydrogen leaking into the front compartment and the dispersion after the leak was stopped were investigated to obtain basic data for specifying the mounting positions of hydrogen leak detecting sensors and the threshold values of alarms for compressed hydrogen vehicles. Ignition tests were also conducted to investigate the flammability and the environmental impact (i.e. the impact on human bodies). These tests were also conducted with methane to evaluate the protection against hydrogen leaks in vehicles in comparison with natural gas (methane). We found that the concentration of hydrogen in the front compartment reached 23.7 vol% maximum when hydrogen gas was allowed to leak for 600 sec from the center of the bottom of the wheelbase at a rate of 131 NL/min, which is the allowable limit for a fuel leak at the time of collision of compressed hydrogen vehicles in Japan.
Technical Paper

Study on Maximizing Exergy in Automotive Engines

2007-04-16
2007-01-0257
The use of waste heat for automobile engine that applied Rankine cycle from the viewpoint of exergy (available energy) was researched. In order to recover heat to high quality energy, a heat-management engine whose exhaust port was replaced with an innovative evaporation device was developed. With this engine, high temperature and high pressure steam (400 degree C, 8MPa) could be generated from a large amount of the exhaust loss. In addition, high temperature water (189 degree C) was obtained from cooling loss. Consequently, the system that recovered more exergy from waste heat was established. To verify the system, the Rankine cycle system was installed in a hybrid vehicle and the automatic control system to change steam temperature and pressure according to the load variation was constructed. As the result of vehicle testing, thermal efficiency was increased from 28.9% to 32.7% (by 13.2% increase) at 100km/h constant vehicle speed.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study of an Aftertreatment System for HLSI Lean-burn Engine

2018-04-03
2018-01-0945
Lean-burn is an effective means of reducing CO2 emissions. To date, Homogenous Lean Charge Spark Ignition (HLSI) combustion, which lowers emissions of both CO2 and NOx, has been studied. Although HLSI realizes lower emission, it is a major challenge for lean-burn engines to meet SULEV regulations, so we have developed a new aftertreatment system for HLSI engines. It consists of three types of catalysts that have different functions, as well as special engine control methods. As the first stage in achieving SULEV emissions, this study focused on enhancing performance under lean conditions. HLSI engine exhaust gases contain high concentrations of hydrocarbons, including a large amount of paraffin, which are difficult to purify, rather than low concentrations of NOx. Therefore, the key point in low emissions is to purify not only NOx, but also high concentrations of paraffin at the same time.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Safety Evaluation on Fuel Cell Stacks Fire and Toxicity Evaluation of Material Combustion Gas for FCV

2007-04-16
2007-01-0435
Fuel cell vehicles represent a new system, and their safety has not yet been fully proved comparing with present automobile. Thorough safety evaluation is especially needed for the fuel system, which uses hydrogen as fuel, and the electric system, which uses a lot of electricity. The fuel cell stacks that are to be loaded on fuel cell vehicles generate electricity by reacting hydrogen and oxygen through electrolytic polymer membranes which is very thin. The safety of the fuel and electric systems should also be assessed for any abnormality that may be caused by electrolytic polymer membranes for any reasons. The purpose of our tests is to collect basic data to ultimately establish safety standards for fuel cell stacks. Methanol pool flame exposure tests were conducted on stationary use fuel cell stacks of two 200W to evaluate safety in the event of a fire.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
X