Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validity of Low Ventilation for Accident Processing with Hydrogen Leakage from Hydrogen-Fuelled Vehicle

2013-04-08
2013-01-0211
Appropriate emergency response information is required for first responder before hydrogen fuel cell vehicles will become widespread. This paper investigates experimentally the hydrogen dispersion in the vicinity of a vehicle which accidentally releases hydrogen horizontally with a single volumetric flow of 2000 NL/min in the under-floor section while varying cross and frontal wind effects. This hydrogen flow rate represents normally a full throttle power condition. Forced wind was about maximum 2 m/s. The results indicated that the windward side of the vehicle was safe but that there were chiefly two areas posing risks of fire by hydrogen ignition. One was the leeward side of the vehicle's underbody where a larger region of flammable hydrogen dispersion existed in light wind than in windless conditions. The other was the area around the hydrogen leakage point where most of the leaked hydrogen remained undiffused in an environment with a wind of no stronger than 2 m/s.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Technical Paper

Urea Deposit Predictions on a Practical Mid/Heavy Duty Vehicle After-Treatment System

2018-04-03
2018-01-0960
Urea/SCR systems have been proven effective at reducing NOx over a wide range of operating conditions on mid/heavy duty diesel vehicles. However, design changes due to reduction in the size of modern compact Urea/SCR systems and lower exhaust temperature have increased the possibility of urea deposit formation. Urea deposits are formed when urea in films and droplets undergoes undesirable secondary reactions and generate by-products such as ammelide, biuret and cyanuric Acid (CYA). Ammelide and CYA are difficult to decompose which lead to the formation of solid deposits on the surface. This phenomenon degrades the performance of the after treatment system by decreasing overall mixing efficiency, lowering de-NOx efficiency and increasing pressure drop. Therefore, mitigating urea deposits is a primary design goal of modern diesel after-treatment systems.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Truck Braking Standards and Regulations in Japan

1989-02-01
890867
This paper introduces the Japanese standards and regulations of automobiles with brakes as the central subject and clarifies the difference from those of Europe and USA by comparison. Further, this paper describes not only the application status of the standards and regulations in Japan but also the features of structure and performance of Japanese trucks that are designed and produced under such standards and regulations. It can be said that the Japanese trucks are comparatively simple in structure but are in a level equal to or higher than European and USA automobiles in respect of performance. Also in respect of the international harmonization, the internationalization of standards is being conducted in Japan on the basis of ISO and the internationalization for regulations is considered to be under preparation.
Technical Paper

Transient Behavior of VOCs Emission and Particle Size Distribution during Active Regeneration of Diesel Particulate Filter Equipped Diesel Engine

2011-08-30
2011-01-2087
In order to reduce fine particle emission, a diesel particulate filter (DPF) has begun to be equipped to a diesel engine. During regeneration of DPF, nanoparticles are known to be formed downstream of DPF. VOCs emission during regeneration is of interest in view of toxicity and formation mechanism of nanoparticles. A heavy duty diesel engine equipped with DPF was investigated to measure particle and VOCs emissions using PTR-TOFMS (Proton Transfer Reaction - Time of Flight Mass Spectrometer). PTR-TOFMS is a new on-line mass spectrometer using chemical ionization and its application to engine exhaust measurements is new. During active regeneration of the DPF, fine particle emission was increased by nucleation. But VOCs as well as THC emissions increased prior to particle increase. After the regeneration the particle and VOCs emissions decreased immediately to the level of normal operation.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The Optimization of Engine Vibration Reduction by Simulation Analysis

1996-10-01
962203
This paper describes a method for effectively reducing a level of idling vibration in heavy-duty trucks, which has been the point at issue lately. In this method, the vibration level is significantly reduced by using a full vehicle model, which is made by finite elements, and varying parameters to study effects. In order to achieve high accuracy, engine excitation forces calculated from the measured fluctuation in the flywheel angular velocity are input to the model. An effective use of this method in an early development stage has enabled us to reduce development cost and the lead-time.
Technical Paper

Test procedures to evaluate vehicle compatibility

2001-06-04
2001-06-0240
Test procedures for evaluating vehicle compatibility were investigated based on accident analysis and crash tests. This paper summarizes the research reported by Japan to the IHRA Compatibility Working Group. Passenger cars account for the largest share of injuries in head-on collisions in Japan and were identified as the first target for tackling vehicle compatibility in Japan. To ascertain situations in collisions between vehicles of different sizes, we conducted crash tests between minicars and large cars, and between small cars and large cars. The deformation and acceleration of the minicar and small car is greater than that of large car. ODB, Overload and MDB tests were performed as procedures for evaluating vehicle compatibility. In overload tests, methods to evaluate the strength of the passenger compartment were examined, and it is found that this test procedure is suitable for evaluating the strength of passenger compartments.
Technical Paper

Study on Hydraulic Active Engine Mount

2003-05-05
2003-01-1418
To date conventional active engine mounts have been applied to diesel passenger cars and recreational vehicles to reduce idle vibration. However, they have not been used with truck engines. This is because the active engine mounts required for the larger engines occupy a significantly larger space than a conventional engine mount in order to support the heavier loads. Consequently it is necessary to develop an advanced active engine mount which satisfies the requirements for not only durability but also size. The authors have developed a new type of active engine mount system based around the use of the bellows, a voice coil motor and an accumulator. The final design has been shown to reduce the transmitted forces significantly while it has a relatively small electrical power consumption.
Technical Paper

Study on Exterior Idling Sound Quality Evaluation Method for Diesel Engine Trucks

1999-05-17
1999-01-1739
In diesel engine trucks, the sound quality improvement as well as the noise level reduction is demanded because of their annoying exterior noise. The semantic differential method was applied to evaluate the sound quality of trucks. In order to improve the analytical accuracy, subjects who can evaluate the characteristics of sound quality were statistically selected among all the subjects. Comfortability and powerfulness were extracted as the principal components by using the data of the selected subjects. It has been clarified that the comfortability strongly relates to high frequency element ratio, high frequency level, etc. The powerfulness strongly relates to the Zwicker loudness.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

Sound Quality of Audible Warning Devices

1993-05-01
931346
A large-size truck is equipped with a variety of audible warning devices. These warning devices are grouped into three categories by their usage, i.e., malfunction type, proximity type and attention type. The sound characteristics of warning sound that are investigated for each type are signal envelope, fundamental frequency and the number of harmonics. Many sounds are synthesized with nine fundamental frequencies, ten or fewer harmonics and two signal envelopes. With volume fixed, these sounds are evaluated using an unpleasantness rating scale, and the functional impression of these sound is also chosen. From the results, the range of fundamental frequencies, the number of harmonics and the shapes of signal envelopes for preferable sound quality are determined.
Journal Article

Simultaneous Improvement of Fuel Consumption and Exhaust Emissions on a Multi-Cylinder Camless Engine

2011-04-12
2011-01-0937
Further improvement in fuel consumption is needed for diesel engines to address regulatory requirement particularly for heavy duty diesel in Japan enforced in 2015, in addition to the compliance to the regulatory requirements for exhaust emission, which seems to be more stringent in future. The authors have participated in the project of “Comprehensive Technological Development of Innovative, Next-Generation, Low-Pollution Vehicles” organized by New Energy and Industrial Technology Development Organization (NEDO), and innovative devices such as multi stage boosting system, ultra high-pressure fuel injection system and variable valve actuation (camless) system had been developed in this project from a standpoint of simultaneous improvement of fuel consumption and exhaust emission. In camless system, intake and exhaust valves are driven by hydraulic pressure. So, fully flexible setting of opening and closure timings and lift of the intake and exhaust valves is possible.
Technical Paper

Simulation Techniques for Determining Motorcycle Controllability Class according to ISO 26262

2018-10-30
2018-32-0060
The ISO 26262 standard specifies the requirement for functional safety of electrical and electronic systems within road vehicles. We have accumulated case studies based on actual riding tests by subjective judgment of expert riders to define a method for determining the controllability class (C class). However, the wide variety of practical traffic environments and vehicle behaviors in case of malfunction make it difficult to evaluate all C classes in actual running tests. Furthermore, under some conditions, actual riding tests may cause unacceptable risks to test riders. In Part 12 Annex C of ISO/DIS 26262, simulation is cited as an example of a technique for comprehensive evaluations by the Controllability Classification Panel. This study investigated the usefulness of mathematical simulations for evaluating the C class of a motorcycle reproducing a malfunction in either the front or rear brakes.
Technical Paper

Safety Evaluation on Fuel Cell Stacks Fire and Toxicity Evaluation of Material Combustion Gas for FCV

2007-04-16
2007-01-0435
Fuel cell vehicles represent a new system, and their safety has not yet been fully proved comparing with present automobile. Thorough safety evaluation is especially needed for the fuel system, which uses hydrogen as fuel, and the electric system, which uses a lot of electricity. The fuel cell stacks that are to be loaded on fuel cell vehicles generate electricity by reacting hydrogen and oxygen through electrolytic polymer membranes which is very thin. The safety of the fuel and electric systems should also be assessed for any abnormality that may be caused by electrolytic polymer membranes for any reasons. The purpose of our tests is to collect basic data to ultimately establish safety standards for fuel cell stacks. Methanol pool flame exposure tests were conducted on stationary use fuel cell stacks of two 200W to evaluate safety in the event of a fire.
X